

AWS supports regions around the world and throughout the USA. A
region is like a datacenter. Regions are independent of each other.
You can place services in a region to be closer to your end consumer
to lower latency and to improve reliability.

An Availability Zone (AZ) is isolated but multiple AZs live in a region.
Placing your services and application in separate Availability Zones,
protects you from outages. Each AZ in region has independent power,
backup generators, UPS units, and often use different utility
companies when possible. AZs may exists in a separate location of a
metropolitan area. AZs are redundantly connected together with fast
connections that deliver low-latency using multiple tier-1 transit
providers.

A VPC lives in a single region and a VPC subnet must live in a single
AZ.

Amazon Elastic Compute Cloud (Amazon EC2)
Amazon EC2 is AWS primary web service that provides resizable
compute capacity in the cloud.

EC2 Compute
Compute is computational power needed for your use case. Amazon
EC2 allows add compute resources through its Web Service API. EC2
allows you to launch instances. An instance is a server and you can
install whatever software you need for your service or web application:
NGINX, Apache httpd, Cassandra, Kafka, etc. When you launch a
virtual server, an instance in EC2 speak, you can use it as you like just
like you would a server in your datacenter. You pay for the compute
power that you use. There are different instance types with various
ranges of CPU, RAM, IO, and networking power. You pay for compute
resources by the hour. You can use more instances and you can
reserve instances for longer periods of time for a price break.

Instance Types
The instance type defines the size of the virtual
instance. There are many types of EC2 instances
with different levels of:

• Virtual CPUs (vCPUs)
• Memory RAM (size and type)
• Network performance

There are families of instance types. Amazon used its
own way to measure compute power called ECU,
but has since moved to the more industry standard
vCPU. A vCPU is a hyperthread of an Intel Xeon core

for M4, M3, C4, C3, R3, HS1, G2, I2, and D2.

• T2 - inexpensive and burst-able (good for less expensive and more sporadic workloads)
• M4 - new generation of general purpose instances (added clustering and placement

groups to M3)
• M3 - old generation of general purpose instances (don’t use this one, M4 is cheaper

and better)
• C4 - compute optimized like M4 but less memory and more vCPUs (use this if you are

not using all of your M4 memory)
• C3 - use C4 as C3 does not provide clustering and placement groups C3 is to M3 as

C4 is to M4
• P2 - GPU intensive applications (Machine learning)
• G2 - graphics-intensive applications (server-side graphic workloads)

M4 - new generation of general purpose instances (added clustering and placement groups to
M3)
C4 - compute optimized like M4 but less memory and more vCPUs (use this if you are not
using all of your M4 memory)
X1 - memory optimized for in-memory computing (SAP HANA)
R3 - memory intensive databases and distributed caches (MongoDB)
I2 - High IOPSat lower cost, SSD storage (MongoDB, Cassandra)
D2 - High IO throughput and large disks at lower cost, magnetic storage (MapReduce,
Cassandra, Kafka)

AMIs exist under a unique id in one region.
To copy an AMI use the aws ec2 copy-image as follows:

aws ec2 copy-image --source-region us-west-2 --source-image-id ami-6db3310d --name
CassandraClusterAMI

Getting the most bang for your buck with AWS Elastic
Block Store (EBS)
Understanding what AWS/EC2 provides for provisioning on-
demand storage is critical for DevOps. Companies waste
tons by over provisioning AWS.

Amazon Elastic Block Store
Amazon Web Services (AWS) provides Amazon Elastic
Block Store (Amazon EBS) for EC2 instance storage. EBS
is the virtual hard drives and SSDs for your servers running in
the cloud. Amazon EBS volumes are automatically
replicated, and it is easy to take snapshots of volumes to
back them up in a known state. The replication happens
within an availability zone (AZ).

AWS EBS has lots of advantages like reliability, snapshotting, and
resizing.

EBS Volumes Types
There are many types of volumes. Different types have
different performance characteristics. The trick is to pick the
most cost-efficient for the workload of your service.

AWS provides four volume types. It provides two types of
Hard Disk Drives (HDD), and two types of SSDs. Volumes
differ in price and performance. An EC2 instance can
have many volumes attached to it, just like a server can have
many drives. A volume can only be attached to one EC2
instance at a time. If you wanted to share files between EC2
instances than you would use Amazon Elastic File
System or S3.

Magnetic Volumes - Hard Disk Drives (HDD)
Magnetic volumes have the lowest performance for random
access. However, they have the least cost per gigabyte. But,
they have the highest access for throughput (500 MB/s) for
sequential access. Magnetic volumes average 100 IOPS, but
can burst to hundreds of IOPS.
IOPS are Input/output operations per second (pronounced
eye-ops). IOPS are used to characterize storage devices.

Services like Kafka which writes to a transaction log in long
streams, and databases which use log structured storage or
an approximate of that using some sort of log structured
merge tree (examples LevelDB, RocksDB, Cassandra) might
do well with HDD EBS - Magnetic volumes. Application that
might employ streaming, or less operations per second but

larger writes could actually benefit from using HDDs throughput
performance.

In general, magnetic volumes do best
with sequential operations like:
• streaming workloads which require

cost effective, fast, consistent I/O
• big data
• data warehouses
• log processing
• Databases that employ log

structured merge tree

There are two types of HDD -
Magnetic Volumes:
st1 - Throughput Optimized HDD
sc1 - Cold HDD and most cost
effective

General-Purpose SSD (gp2)
General-purpose SSD (gp2) volumes are cost
effective, and useful for many workloads. It is the
minivan of EBS. Not sexy but works for a lot of
applications, and is common.
Performance of gp2 is three IOPS per gigabyte
provisioned, but capped at 10,000 IOPS. The sizes
range from 1 GB to 16 TB. Databases that use some
form of BTrees (MongoDB, MySQL, etc.) can benefit
from using SSD. But gp2 would be more geared to a
lower volume database or one that has peak load
times but long periods at rest where IOPS credits

can accumulate.

Under 1 TB these volumes burst to 3,000 IOPS for extended
periods of time. For example, if you have a 250 GB volume
you can expect a baseline of 750 IOPS. When those 750
IOPS are not used, they are accumulated as IOPS credits.
Under heavy traffic, those IOPS credits will be used and this
is how you can burst up to 3,000 IOPS. IOPS credits is like a
savings account. You use this savings when you get hit hard
by a user tornado. But as you are using it, the bank account
is being withdrawn from.
• Development and test environments
• A server than does periodic batch or cron jobs
• Recommended for most workloads
• Can be used for boot volumes
• Low-latency interactive apps
• Medium-sized databases

Provisioned IOPS SSD (io1)
Provisioned IOPS SSD volumes are for I/O-intensive workloads. These volumes are
for random access I/O throughput. They are the most expensive Amazon EBS
volume type per gigabyte. And, they provide the highest performance of random
access of any Amazon EBS volume. With this volume type you can pick the number
of IOPs (pay to play). The IOPs can be up to 20,000. These volumes are great for
high-volume databases or just databases that need a constant level of performance.
High volume databases that use some form of BTrees (MongoDB, MySQL, etc.) can
benefit from using this SSD volume. The io1 IOPS can be ramped up.
Provisioned IOPS SSD volumes are more predictable (don’t have to store up IOPS
like gp2), and for application with higher performance needs like:
• Mission critical business applications that require sustained IOPS performance
• Databases with large, high-volume workloads

Overcoming the performance problems by using Provisioned IOPS is expensive.

Some companies have employed RAID-0 striping using a 4-way stripe and
used EnhanceIO to effectively increased throughput by over 50% with no more
additional expense.
EnhanceIO driver is based on EnhanceIO SSD caching software product developed by STEC Inc. EnhanceIO was derived from Facebook’s open source Flashcache project. EnhanceIO uses SSDs as cache devices for tradit ional rotating hard disk drives (referred to as source volumes throughout this document). –EnhanceIO
RAID-0 can be employed to increase size constraints of EBS and to increase
throughput.

3 * 200G = 600 IOPs
600 IOPs * 4 EBS VOLUMES = 2,400 IOPs

2,000 GB * 3 IOPs * EBS volumes =
24,000 IOPs

4,000,000,000,000 (TOTAL BYTES) / 1,000,000,000 (1
BILLION/GIG) * 3 IOPs per GIG * 10 EBS volumes = 120,000
IOPs

BUT…. 1 box can only have 65,000 IOPs!

65,000 IOPS.

“Attaching more than 40 volumes can cause boot failures.
Note that this number includes the root volume, plus any
attached instance store volumes and EBS volumes. If you
experience boot problems on an instance with a large
number of volumes, stop the instance, detach any volumes
that are not essential to the boot process, and then reattach
the volumes after the instance is running.”

20,000 IOPs per Volume = 80,000 but
exceeds 65,000 so 65,000

825,000 IOPs

“EBS–optimized instances deliver dedicated bandwidth to Amazon
EBS, with options between 500 Mbps and 12,000 Mbps, depending on
the instance type you use. When attached to an EBS–optimized
instance, General Purpose SSD (gp2) volumes are designed to deliver
within 10% of their baseline and burst performance 99% of the time in
a given year, and Provisioned IOPS SSD (io1) volumes are designed to
deliver within 10% of their provisioned performance 99.9% of the time
in a given year. Both Throughput Optimized HDD (st1) and Cold HDD (sc1)
guarantee performance consistency of 90% of burst throughput 99%
of the time in a given year. Non-compliant periods are approximately
uniformly distributed, targeting 99% of expected total throughput each
hour. For more information, see Amazon EBS Volume Types.”
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimize
d.html#enable-ebs-optimization

Performance testing and monitoring
The best way to make an educated guess to pick the right
EBS is to know your tool. If you are deploying Kafka or
Cassandra or MongoDB then you must understand how to
configure the tool and EBS to get the most bang for the
buck. When in doubt, test.
You can make educated guesses about which EBS will fit
your application or service the best. However using Amazon
CloudWatch and watching the IOPs and IO throughput while
load testing or watching production workloads could be the
quickest way to to pick the best EBS volume type and get
the most bang for your buck. This can also help you decide
whether or not to use RAID 0, HDDs (st1 or sc1), provisioned
IOPS SSD (io1), SSD general purpose (gp2) or not. There is
no point in overpaying, and you do not want a laggy service

or application that do not meet their SLAs.

Understanding what AWS provides for backing up EBS
volumes is an important concept for DevOps.

Data safety with EBS - Backup/Recovery (Snapshots)

Amazon EBS allows you to easily backup data. You do this
by taking snapshots. Snapshots are point-in-time backups.
Data written to an EBS volume can be periodically used to
create a snapshot. Snapshots provide incremental backups
of your data. Snapshots just saves the blocks that have
changed. Only changed blocks since the last snapshot are
saved in the new snapshot.

Even though snapshots are saved incrementally, only the last
snapshot is needed in order to restore the volume. You can

delete older snapshot, and still use the latest snapshot.

Taking EBS Snapshots
Snapshots are done with:
• AWS Management Console
• Scheduled snapshots
• AWS API
• AWS CLI
EBS snapshots are backed by S3 in AWS-controlled storage. You can’t see these snapshots your
account’s Amazon S3 buckets. It is hidden from you but backed by S3. You use the snapshot tools to
manage snapshots not S3.
Snapshots are stored per region. You use snapshots to create new EBS volumes. Snapshots can be
copied to other regions.
Using snapshots
Snapshots are used to create new EBS volumes. The volume is created and the data is transferred lazily
into the EBS volume. Data accessed before the transfer is restored on request. If you need to increase the
size of a volume, you create a snapshot and then recreate a larger volume from the snapshot. Then
replace the original volume with the new volume from the snapshot.
Tag snapshots to help manage them later. Describing the original volume of the snapshot with the device
name (/dev/sdd).
The AWS console can be used to take snapshots or the command line.
Restoring volumes from snapshots
Amazon EBS volumes persist beyond the EC2 instance lifecycle. Thus you can recover data of an instance
that fails. Before the instance is terminated, the volume should be detached. Then the volume can
attached as a data volume to another instance and then the data can be recovered.
Backing up root devices
To create a snapshot from a root devices EBS volume, should unmount the volume before taking the
snapshot so the OS or application that have outstanding / cached blocks can flush them. To unmount the
volume in Linux, use the following command:

umount -d /dev/sdc

Understanding what AWS provides for setting up private networks, security groups
and more is important for anyone who calls themselves DevOps.
AWS allows you to define a software defined network. You do this with Amazon
Virtual Private Cloud (Amazon VPC). You can define subnets, ingress rules, security
groups, NAT gateways, Internet gateways, and more.

A VPC is a virtual private cloud. You can create multiple Amazon VPCs within a
region that spans multiple availability zones. A VPC is an isolated area to deploy
instances.
A VPC is associated with a CIDR block.

Amazon VPC DHCP Option Set
A VPC is associated with a DHCP Option Set.
Dynamic Host Configuration Protocol (DHCP) provides a standard for configuring
TCP/IP networks.
DHCP Options allow you to configure DHCP per VPC as follows:
• domain name
• domain name server
• netbios-node-type
By default AWS creates and associates a DHCP option set for your Amazon VPC.
The default DHCP option set uses domain-name-servers set to AmazonProvidedDNS
(Amazon Domain Name System), and the domain-name set to the domain name for

your region

With CIDR block notation the /# denotes the size of the
network or rather how many bits of the address will be used
for the network. For example: 10.10.1.32⁄27 denotes a CIDR
range (also known as CIDR block). It denotes that the first 27
bits of address is for the network (32 bits total). 32 - 27
leaves five bits for your servers. 00000-11111. The first five
addresses are reserved in a subnet, and the last address is
reserved for broadcast. This leaves us 26 addresses for our
servers. There are tools to help build CIDR based subnets.
From address 10.10.1.37 to 10.10.1.61. VPC address range
may be as large as /16 (32-16 = 16 bits which allows for
65,536 available addresses) or as small as 16 addresses (/28
is 32 - 28 = 4 bits which is 16 available addresses). The
addresses of two VPC should not overlap if you plan on
adding VPC peering.

An Amazon VPC is made up of subnets, route
tables, DHCP option sets, security groups, and
Network ACLs.

An AWS VPC can also have Internet Gateways
(IGWs), Virtual Private Gateways, VPGs, Elastic
IP (EIP) addresses, Elastic Network Interfaces
(ENIs), Endpoints, Peering, and NAT gateways.

A VPC has a router defined by its route tables
(per subnet and default).

The VPC CIDR has 65536 hosts.
Avoid the last few and first five hosts in any subnet.

Amazon CloudFormation
CloudFormation allows developers, DevOps, and
Ops create and manage a collection of related AWS
resources. You can create and update items in a
predictable fashion. You do this by creating
CloudFormation templates which are written in JSON
or YAML. Then you can submit the templates to be
create stacks which can be updated.
We will use CloudFormation to cover the different components of the VPC in more detail.

Amazon VPC Subnets
A subnet is a part of an VPC’s IP address range. Just
like a VPC you need to specify a CIDR blocks for a
subnets. Subnets are associated with availability
zones (independent power source and network).
Subnets can be public or private. A private subnet is
one that is not routable from the IGW.

Internet Gateways
An Internet Gateway (IGW) enables traffic from the
public Internet to your VPC. Subnets that have route
tables that target the IGW are public subnets. The
IGW does network address translation from public
IPs of EC2 instances to their private IP for incoming
traffic. When an EC2 instance send IP traffic from a
public subnet, the IGW acts as the NAT for the public
subnet, and translates the reply address to the EC2
instance’s public IP (EIP). The IGW keep track of the
mappings of EC2 instances private IP address and
their public IP address. AWS ensures that the IGW is
highly available and handles the horizontal scale,

redundancy as needed.

We are covering route tables next.

Amazon VPC Subnet Route Tables
Route tables contain a set of ingress and egress rules called
routes. These rules are applied to the subnet. The routes
direct network traffic. The route tables connect subnets
within a VPC so they can communicate. Routes are specified
by CIDR and a target.

The most specific route that matches the traffic determines
how to route the traffic. Route tables can specify which
subnets are public and which subnets are private (if the
subnet does or does not have a route to the
InternetGateway). Each subnet is always associated with a
route table which dictates routes for that subnet. If a route
table for a subnet is not specified then that subnets uses the
main route table (which is associated with the VPC).

The above shows the Amazon CloudFormation from the public subnet defined earlier to the
Internet Gateway.

Amazon VPGs, CGWs and VPNs
Amazon allows VPCs to be connected to your existing data center to allow AWS
to augment your existing IT infrastructure. You can connect your existing
datacenter to an Amazon VPC using VPG (Virtual Private Gateways)
and CGW (Customer Gateways).

Think of the VGW like the IGW but it sends traffic to your corporate network
instead of the public Internet. VPGs connect to your companies Virtual Private
Network (VPN) connector. The VPG is the Amazon side of the VPN connection.
The CGW is the customer side of the VPN connector. CGWs are processes
running on a server or network device.

You connect a VPG and a CGW with a VPN tunnel, which allows traffic between
your corporate network and your Amazon VPCs. The VPN connection uses the
IPSec (Internet Security Protocol) tunnels for higher availability to the AWS VPC.

You can setup the VPN connection to use dynamic routing if the CGW supports
it (via Border Gateway Protocol). If your CGW does not support dynamic routing,
use static routes to decide which traffic is meant for the VPC. Routes are
propagated to the VPC to allow traffic back to your corporate network via the
VGW.

The above shows that we are covering Elastic IPs and NatGatways next.

Amazon Elastic IP (EIP)
AWS has a pool of public IP addresses available to rent per
region. These public IP addresses are called Elastic IP
Addresses (EIPs). You check out an EIP like a library book.
As long as you have the EIP checked out, no one else can
use it. You can keep the EIP as long as you want but you
pay for it. Unused EIPs are more expensive than EIPs that
you are using with an EC2 instance. You can assign an EIP
to an instance (and only one). You could spin up a new
upgraded version of the instance from a snapshot, and the
reassign the EIP to the new upgraded instance.

EIPs allow using a set of fixed public IP addresses that can
be reassigned to underlying infrastructure which could
change over time. EIPs are allocated in a VPC, but can be

moved to another VPC in the same region. EIPs can be assigned
to resources like EC2 instances.

Amazon NAT Gateways
Amazon EC2 instances launched in a private subnet cannot access the Internet
unless there is a NAT. A NAT is a network address translator. Even if you wanted
to update your instances with yum install foo, you could not do it because they
have no route to the public Internet. AWS provides NAT gateways which are
similar to IGW but unlike IGWs they do not allow incoming traffic, but rather only
allow responses to outgoing traffic from your Amazon EC2 instances.

NAT gateways are simple to manage and highly available. A VPC subnet lives in
a single Availability Zone (AZ). To maximize failover you will want to deploy a NAT
gateway per AZ.

To allow Amazon EC2 instances within a private subnet to access Internet
resources through the IGW using a NAT gateway, you must do the following:
Set up the route table by connecting the private subnet to direct Internet traffic to
the NAT gateway
Associate the NAT gateway with an EIP

They added an egress only gateway which is like a NAT gateway but only works
with IPv6.

Amazon Enhanced networking: Placement
groups and networking speed
Instance types m4, c4, p2, g2, r3, g2, x1, i2
and d2 support placement groups which are
essential for server to server performance
which is important for clustering.
To achieve maximum throughput, placement
groups must be placed in the same AZ.
Amazon EC2 instances can achieve speeds of
up to 10 Gbits if both instances are in the same
placement group and in the same AZ.

Amazon Elastic Network Interface (ENIs)
An ENI is an Elastic Network Interfaces. An ENI is often just called a network
interface in AWS speak. An ENI is a virtual network interface that you can attach to
an instance in a VPC. You can also detach an ENI and attach to another EC2
instance. ENIs don’t work with EC2 classic (no VPC EC2).
An ENI can have the following properties:
• description
• primary private IPv4 address
• potentially multiple secondary private IPv4 addresses
• EIP per private address
• public IPv4 address
• multiple IPv6 addresses
• multiple security groups (at least one)
• MAC address
• source/destination check flag

Again, the what makes these ENIs elastic is that you can create an ENI, attach it to
an EC2 instance, detach it from an EC2 instance, and attach it to another. The ENI
keeps its properties no matter which instance it is attached to.

If an underlying instance fails, the IP address (MAC, public IP, EIPs, etc.) are
preserved by attaching the ENI to a new replacement EC2 instance. ENIs can be

used to create low-budget, high-available solutions.

We are covering Amazon Security Groups next.

Amazon VPC Security Groups
A security group (SG) is a stateful firewall that controls inbound and
outbound network traffic to EC2 instances and AWS resources
like Elastic Load Balancers. Security groups being stateful means an
Amazon instance (or resource) is allowed to respond to an inbound
traffic with outbound traffic. AWS EC2 instances have to be associated
with a security group if not specified then it is associated with the
default security group for the VPC. AWS EC2 instances can be
associated with security groups after they are already running. Each
VPC can have up to 500 security groups.

Rules are only allow rules. Rules consist of the following attributes:
• Source (CIDR or SG id)
• Protocol (TCP, ICMP, UDP, HTTP, HTTPS, SSH, etc.)
• Port range (8000-8080)

Security groups specify up to fifty inbound and 50 outbound rules
using CIDRs or other security groups. AWS will evaluate every rule

before deciding to permit traffic.

Source can be a CIDR or other security groups in the same VPC.

Notice the SG is tied to VpcMain defined before.

Note that 0.0.0.0/0 equates to all public traffic.

The above allows all traffic from the VPC’s CIDR to access this box.
-1 means all ports.
Ingress in incoming traffic.
Egress is outgoing traffic.

This is taken from an example that uses Cassandra running in multiple regions.
The Cassandra EC2 instances are running in a public subnet.

We are covering Amazon Network ACL Control List (NACL)
next.

Amazon Network Access Control List (NACL)
Network ACL (NACL) is a stateless layer of security. NACLs
act as a stateless firewall. NACLs provide a number ordered
list of rules. The lowest number rule is evaluated first. First
rule that allows or denies wins. NACLS support
both allow rules and deny rules. Return traffic must be
allowed (stateless). NACL applies to the whole subnet.

Auto Scaling
Auto Scaling is used scale Amazon EC2 capacity up or down
automatically. You can autoscale a group of instances based on
workload. It can be used to recover when instances go down by
automatically spinning up an instance to take its place. Auto Scaling
groups can span multiple AZs.

Amazon Route 53
Amazon Route 53 is a DNS as a service. Route 53 is highly available
and scalable. You can use easily assign resources DNS names instead
of configuring with public IP addresses.

Amazon CloudFormation
CloudFormation allows developers, DevOps, and Ops create and
manage a collection of related AWS resources. You can create and
update items in a predictable fashion. You do this by creating
CloudFormation templates which are written in JSON or YAML. Then
you can submit the templates to be create stacks which can be

updated.

Amazon makes it easy to create immutable infrastructure with its AWS command line tools
and CloudFormation.
Get into the habit of using CloudFormation and AWS command line instead of the console to
launch instances.

IAM
AWS Identity and Access Management (IAM) enables secure control access to AWS Cloud
services and resources for their users. IAM defines, users, roles, and allows you to apply this
to EC2 instances as well as users or groups of users. To use CloudWatch logging or metrics
from an application, you would need to assign rights to a role and then associate an IAM role
with your EC2 instance.
KMS
AWS Key Management Service (KMS) allows you to create and control the encryption keys.
KMS uses Hardware Security Modules (HSMs) to protect the security of your keys. KMS can
be used to encrypt Amazon EBS volumes, Amazon S3 buckets and other services.
KMS can be used for compliance encryption operations for SOC1, SOC2, SOC 3, PCI DSS
Level, ISO 27017⁄20018, and for FIPS 140-2.
KMS also provides an REST API to encrypt data on an application basis.
AWS Certificate Manager
AWS Certificate Manager removes the time-consuming manual process of purchasing,
uploading, and renewing SSL/ TLS certificates. AWS Certificate Manager allows provision,
manage, and deploy Secure Sockets Layer/ Transport Layer Security (SSL/ TLS) certificates
for use with AWS Cloud services like ELB or CloudFront (an Amazon CDN). No longer do you
have to purchase, upload and manually update/renew SSL/TLS certificates for the ELB or
CDN.
Amazon CloudFront
Amazon’s CDN to put resources closer to end users of your applications and services.
Amazon S3
Amazon Simple Storage Service to store your backups and big data. Good for backups.

Amazon CloudWatch

Amazon CloudWatch is a monitoring service it uses for its AWS Cloud
resources and services. However you can use CloudWatch for your
services and applications.

CloudWatch can track key performance indicators (KPIs) and metrics,
allow log aggregation, and can easily create alarms. You can even
trigger AWS Lambda functions based on limits of an KPI or how often
an item shows up in log stream in a give period of time.

Amazon CloudWatch provides system-wide visibility into resource
utilization, and operational health. Unlike many monitoring systems,
CloudWatch integration with the entire Amazon ecosystem so you not
only have insights into your systems but you can react to triggers and
events to keep everything running smoothly.

Apache Cassandra is extensively deployed in AWS. Apache Cassandra is extensively
deployed in AWS. An estimated 60,000 AWS customers also use Cassandra. Over 1/3 of
Cassandra deployments are on AWS. More AWS users use Cassandra than DynamoDB. AWS
recently published guide on Cassandra called: Apache Cassandra on AWS.

Cassandra is a linear scalable, open source NoSQL database. Cassandra uses log-structured
merge-tree, which makes Cassandra one of the best options for high-throughput writes.
Cassandra delivers continuous availability, with operational simplicity. Unlike many other
NoSQL solutions, Cassandra is a master-less peer-to-peer distributed clustered store. Each
node knows about the cluster network topology via the gossip protocol.

A Cassandra node is one server in a Cassandra cluster. Cassandra nodes store partitions of
data according. Cassandra nodes deploy into Cassandra clusters, the largest unit of
deployment. In AWS, it is normal for a Cassandra cluster to span Availability Zones and AWS
regions to improve disaster recovery and speed client throughput.

Cassandra clusters consist of racks and data centers. Nodes get deploy as members racks
which get deployed into data centers. In Amazon, Availability Zones (AWS AZ) equate to
Cassandra racks, while Amazon regions equate to Cassandra data centers.

Cassandra nodes deploy to racks (AWS AZs). The number of racks/AZs should equate to a
multiple of the replication level. Nodes on a rack or in an AZ have fast connectivity. AZs, in the
same region, have low-latency links which benefit replication and data consistency checks.

A commit log is a transaction log on every node in the cluster. All Cassandra write operations
are written to the commit log first. Commit logs are written sequentially-append only. Only
during Cassandra node recovery, Cassandra reads the commit log. Cassandra replays commit
logs to perform Cassandra node recovery. Commit logs are either flushed periodically by the
OS or written in batches. Care must be taken to keep the commit log on a different EBS
volume if using HDD.

A memtable is an in-memory version of an SStable. The memtable is a write-back cache of
data rows that is looked up by key. One memtable links to one Cassandra table. Memtables
are flushed to disk when the node reaches global memory thresholds, full commit log event, or
Cassandra table level interval arrived event.

In EC2, Cassandra nodes must run on EC2 instances that have enough memory to support
Cassandra caches, and memtables while leaving enough room for Linux OS buffers for TCP/IP
stack.Cassandra also has key caches and row caches. Use cases that have high read to write
ratios will benefit from large caches and EC2 instances that enough system memory (DRAM).

An SStable is the disk representation of a memtable SStable is a write-only data structure.
When a memtables flush, they are written key sorted, sequentially to form an SStable. Later
SSTable is compacted by being merge-sorted and rewritten as a new larger SSTable. Type of
compaction of SSTables can take between 20% and 50% overhead disk space. This space
has to be accounted for when allocating EBS volumes.

A keyspace is a like a database schema. Keyspaces have many tables and define replication
strategy, replication factor, and rules. The more replication, the more IO needs which impact
IO costs (more IOPs and more network bandwidth needs). A Cassandra table is like a SQL
table except it can contain complex colums (maps, sets, lists). Cassandra tables are collection
of ordered columns fetched by row. A table row key is known as the partition key. The row
key determines the data distribution across a cluster.

Looks like the pricing for the storage optimized is closer than when that benchmark was done
with I2, and the I3 specs are more impressive.

We won’t cover C4 vs. M4 yet.

For now C4, is like M4 with about ½ the system memory (DRAM).

Cassandra AWS Storage Requirements
Cassandra does a lot sequential disk IO for the commit log and writing
out SSTable. You still need random I/O for read operations. The more
read operations that are cache missing, the more your EBS volumes
need IOPS.
Cassandra writes to four areas
• commit logs
• SSTable
• an index file
• a bloom filter
It makes sense if possible to have commit logs on a separate disk if
using magnetic disks. SSTables are written to in streams but are read
from using random access if data is not found in cache. SSTables can
benefit from SSD drives due to random access.

Consider EC2 instance store instead of EBS
AWS provides local storage called instance storage which is not
available with all EC2 instance types, and Elastic Block Store
(EBS). Instance storage does not have to go over a SAN or Intranet,
instead it uses the local hardware bus. Instance storage is right there
on the server you are renting. The downside of EC2 instance storage is
the expense, and it is not as flexible as EBS. Due to historic problems
with EBS, it used to be the only real option for running Cassandra in
AWS. EBS has a reputation for degrading performance over time.
Some of this has likely been fixed with enhanced EBS, but instance
storage is more reliable.

EBS is ok for Cassandra, Prefer EBS
Using EBS with Cassandra did not work very well in the past, and you
had to use more expensive EC2 instances with instance storage.
Until recently using Cassandra and AWS EBS was not a good idea.
The latest generation of EBS-optimized instances offer a good mix of
performance and for many use cases rivaling instance storage. EBS
volumes are usually the best pick for price for performance. If in doubt
start with EBS-optimized instances. EBS has nice features like
snapshots, and redundancy that make it preferred if performance is
close or horizontal scale out is an option. Also with EBS elastic
volumes, provisioned IO and enhanced EBS, it would be hard not to
pick EBS. It is just a lot more flexible, and less expensive.

From AWS docs:

“EBS-optimized Instances
For an additional, low, hourly fee, customers can launch selected Amazon EC2
instances types as EBS-optimized instances. For C4, M4, P2, and D2 instances,
this feature is enabled by default at no additional cost. EBS-optimized instances
enable EC2 instances to fully use the IOPS provisioned on an EBS volume. EBS-
optimized instances deliver dedicated throughput between Amazon EC2 and
Amazon EBS, with options between 500 and 4,000 Megabits per second (Mbps)
depending on the instance type used. The dedicated throughput minimizes
contention between Amazon EBS I/O and other traffic from your EC2 instance,
providing the best performance for your EBS volumes. EBS-optimized instances
are designed for use with both Standard and Provisioned IOPS Amazon EBS
volumes. When attached to EBS-optimized instances, Provisioned IOPS volumes
can achieve single digit millisecond latencies and are designed to deliver within
10% of the provisioned IOPS performance 99.9% of the time. We recommend
using Provisioned IOPS volumes with EBS-optimized instances or instances that
support cluster networking for applications with high storage I/O requirements.”
https://aws.amazon.com/ec2/instance-types/

EC2 instances we work with for the right IO for your Cassandra cluster
EC2 instances we use tend to be from the M4 family and the I3 family (released Nov 30, 2016).
M4 is AWS EC2s newest generation of general purpose instances with EBS optimized storage
whilst the I3 family includes fast SSD-backed instance storage optimized for very high random
I/O performance. I3s provide high IOPS at a low cost. For tiny read/writes benchmarking i3
EC2 instances are better instances than m4s (EC2 instances) at 8x the read speed (note
benchmark was I2 vs. M4, but I3 is the latest). For medium read/writes, m4 are equivalent
(EBS optimized) but at 8x less cost than i3s (keep in mind price goes down and performance
goes up over time). There have been some reports of EBS storage degrading over time. But for
8x the cost, and with some monitoring and replication, you could automate the retirement of
degrading EC2 instances using optimized EBS that are degrading.

EC2 I3 instances go up to 3.3 million random IOPS (great for reads) at 4KB block size, and the
I3 throughput goes up to 16 GB/s. It is a beast. The max IOPs for an instance using EBS is
65K with a max throughput of 1,250 MB.

An advantage of the M4 family is the ability to use EBS to create snapshots and simply spin
up new instances by attaching EBS volume to a new instance. If you are not sure, start
with m4.2xlarge. (You can use optimized EBS with I3 as well.)

You can consider D2 family of EC2 instances for mostly write operations or offline analytics
that performs large queries. The D2 family offers the highest throughput for cost. If you are
keeping a lot of logs or even approaching big data uses cases, this might be a great option for
high throughput (mostly writes and mostly batch reads). We will talk about C4 when we cover

CPU resources.

If in doubt use SSD EBS volumes. SSDs provide low-latency response
times for random read operations and supply enough throughput for
long sequential writes performance for compaction operations, writing
SSTables and commit logs. Magnetic disks in EC2 have greater
throughput but less IOPS which is good for SSTables compaction but not
good for random reads.
HDD are the cheapest per byte of storage and cheapest for byte
throughput.
If in doubt, use SSD volumes. You can change it later after observing
load test and production KPIs for IOPs and throughput. You can used
provisioned IOPs with SSDs to buy IOPs for Cassandra clusters that
are doing a lot of reads.

Separate EBS volume for Cassandra commit log
It makes sense if possible to have commit logs on a separate disk if
using magnetic disks. SSTables are written to in streams but are read
from using random access if data is not found in cache.

Take replication and compaction overhead into account. The
compaction process of SSTable data makes heavy use of the
disk. LeveledCompactionStrategy may need 10 to 20% overhead.
SizeTieredCompactionStrategy worse case is 50% overhead needed to
perform compaction.

Keep this in mind while sizing disks. If you are doing a high-update use
case, LeveledCompactionStrategy is the best solution if you want to
limit the total disk size used at any point in time and to optimize reads
as the row will be spread across less (up to ten times less)
SSTables. LeveledCompactionStrategy requires more IO and
processing time for compactions. If in doubt,
use LeveledCompactionStrategy.

If you use RAID, RAID 0, which focuses on speed, is sufficient for
Cassandra because Cassandra has replication and data-safety built-in.
With Cassandra 3.x you should use JBOD (just a bunch of disks)
instead of RAID 0 for throughput speed. JBOD is preferred, and it can
help with random read speeds.

XFS is the preferred file system since it has less size constraints (sudo

mkfs.xfs -K /dev/xvdb) and excels at writing in parallel. You can use EX4 as
well but avoid others.

Using the new EBS elastic volumes goes well with ext4 and XFS. For
ext4, you will need to expand the volume using sudo resize2fs

/dev/xvda1 and use this for XFS sudo xfs_growfs -d /mnt.

The key point here is that the OS will not automatically expand. You
will have to tell it.

Cassandra Encryption at rest use Amazon KMS

If you need data at rest encryption, use encrypted EBS volumes / KMS
if running in EC2, and use dm-crypt file system if not. Since AWS KMS
uses hardware-assisted encryption, it is going to be much faster than
the encryption that comes with the JDK. Next fastest would be Linux
based file system encryption. Avoid encryption from Cassandra JDK.
Encrypted volumes have the same IOPS performance on as
unencrypted volumes.

EBS easily supports KMS encryption, and it integrates well. However instance storage
requires that you use an encrypted file system like dm-crypt. This is another clear advantage
for KMS.
Also, KMS allows you to easily rotate keys and expire them.

EBS has been know to degrade over time

With EBS, you need to keep an eye out for EBS issues like poor
throughput, performance degrading over time, and instances not
cleanly dying. This is where system monitoring like CloudWatch comes
into play and one reason we build images AMIs which can be
monitored using Amazon CloudWatch. We support Linux OS log
aggregation, and Cassandra log aggregation into CloudWatch. We
also support OS metrics and Cassandra metrics into CloudWatch.

Scaling Cassandra read speeds:
• Horizontally scale Cassandra (more nodes)
• Use instance store (super fast IO)
• Buy provisioned IOPs – or bigger SSDs
• Add more disks to each node using JBOD (more disks / EBS

volumes)
• EC2 instances with more SSDs or Disks if using
• Use a bigger key-cache, row-cache (more memory / more cache)
• More disk space for SizeTieredCompactionStrategy
• Don’t forget to optimize query and partition keys
• Add more tables or materialized views to optimize queries

Cassandra CPU requirements in AWS Cloud
Cassandra is highly concurrent. Cassandra nodes can uses as many
CPU cores as available if configured correctly.
An Amazon EC2 vCPU is a hyper thread, often referred to as a virtual
core. Think of it as a physical thread of execution. It is able to run one
thread at a time (which of course could be swapped out).

Cassandra High writes can be CPU bound
Cassandra clusters workloads that do a lot of writing (insert heavy),
can be CPU-bound. This can be multiplied if using JBOD, where a
single node is managing 4 or 8 volumes. Cassandra is efficient for
writes, but this is largely due to doing a structured merge sort during
compaction, which is CPU intensive. Often the CPU becomes the
limiting factor for writes.
Since writes are almost never IO bound, the ideal number
of concurrent_writes is dependent on the number of cores in
Cassandra node. Thus set concurrent_writes in cassandra.yaml to 8 x
vCPU is a good rule of thumb for EBS and 4 x vCPU for EC2 instance
storage.

The concurrent_compactors should be set to the # of vCPUs if using
SSDs, and set to the number of attached EBS volumes / disks for
JBOD. The point, that the more CPU resources your Cassandra node
has, the faster the compaction throughput. See this Cassandra tuning
guide for more information, and this JIRA ticket.

Compaction strategy can influence vCPU usage
SizeTieredCompactionStrategy works with larger SSTables so has
more spikey CPU usage. Supports faster writes.
LeveledCompactionStrategy will use a more even level of CPU.
Supports faster reads.

In general use 4 to 8 vCPUs for Cassandra Nodes minimum
You need at least 4 cores but prefer 8 cores for a production
machine. Compaction, compression, key lookup based on bloom
filters, SSL if enabled, will all need CPU resources. The m4.xlarge falls
a bit behind for this as it only has 4 vCPUs (4 cores).
The m4.2xlarge has 8 vCPUs which should be able to handle most
production loads nicely. The i2.xlarge (for high random read)
and d2.xlarge for high writes and long sequential reads are also a little
light on CPU power. Consider i3.2xlarge and d2.2xlarge for production
workloads as they have 8 vCPUs.

CPU Usage for GC1 Garbage collector and CMS
Both the GC1 Garbage collector and the CMS garbage collector
benefit from having more threads. When working with large Java heap
sizes, GC1 and CMS can benefit from parallel processing which
requires more CPUs.

CMS has a habit of turning memory into Swiss cheese and over time,
needing a full, stop the world garbage collection. GC1 does not have
this same problem with memory fragmentation, which is why CMS is
deprecated in Java 9.

Multi-DC / Multi Region need more CPU resources
If you are using multiple regions, i.e., a multi-dc deployment then you will
want to increase the max_hints_delivery_threads as cross DC handoffs are
slower. Also keep in mind for cluster/storage communication that there is
more CPU overhead, which might be a wash if the DC to DC communication
has a lot of latency. Cassandra allows one outbound hint thread per
Cassandra node. The maximum inbound hint streaming per node will still
be hinted_handoff_throttle_in_kb. You can safely
increase max_hints_delivery_threads without worrying about overwhelming a
single node. See Bandwidth Required for Cassandra Hinted Handoff for more
details about the math.

How many threads do you need? How eventually consistent do you want to
be between data-centers? (And how long will these threads be waiting for
IO? Depends on the latency of the network and your throttle rate.) Increase
this to 16 or more for two DCs. Increase it to 32 or more for multiple DCs. For
single DC deployments, set it to 1⁄2 the number of nodes in the system or
less. With Cassandra, it is important not to just consider the happy case, but
the unhappy case like a DC went down for a few hours, and came back up
right during peak usage. It is good to have the extra CPU. The more nodes or

latency between, the more vCPU you might want to have.

Cassandra workloads with large datasets
For Cassandra workloads that can’t fit into main memory, Cassandra’s
bottleneck will be reads that need to fetch data from disk (EBS Volume
or local storage). The concurrent_reads should be set to (16 *
number_of_drives) so you have the potential with JBOD 4 of having 64
read threads.

Doing a lot of streaming writes between nodes?
Increase memtable_flush_writers
If you are streaming a lot of data from many nodes, you need to
increase the number of flush writers (memtable_flush_writers). Avoid
the streams all hitting the memtables. If you do not have enough
writers to deal with a (larger than normal) amount of data hitting them
you can cause your streams to fail. The recommendation is to
set memtables_flush_writers equal to the number of vCPUs on the EC2
Cassandra node instance. More vCPUs allows more throughput for
writes.

Read Scale it to Billions — What They Don’t Tell you in the Cassandra
README for more details.
Recall, if your data directories are backed by instance storage SSD,
you can increase this using memtable_flush_writers *
data_file_directories <= # of vCPU. If you are using instance storage
HDDs or EBS SSD use memtable_flush_writers: #vCPUs. Do not leave
this set to 1.

Horizontal scale is not always possible with Cassandra
When you are using Cassandra for super high-speed writes or using it
with very large datasets, you may have to scale up your Cassandra
nodes and add more vCPU and memory. Vertical scale-up is also
needed in some cases.

When horizontally scaling, Cassandra does a lot of streaming, you could make EC2 instances
larger (gradually), add your nodes, let Cassandra stream data to new nodes, and then
gradually make the Cassandra instances smaller again. You would employ EBS snapshots,
take nodes offline, resize them, bring them back online, let them recover, repeat.

AWS Cassandra and NUMA
The i3.8xlarge, c4.8xlarge, m4.10xlarge, and above EC2 instance types use more than 1 CPU,
which means NUMA controls are available. A good read on this is from Al Tolbert’s blog post.
The quickest way to tell if a machine is NUMA is to run “numactl –hardware”. -Al Tolbert blog
post on Cassandra tuning. NUMA stands for Non-Uniform Memory Architecture. Modern x86
CPUs contain an integrated memory controller. Multi-socket system, have two memory
controllers. Each CPU gets a share of the memory. If one CPU socket needs memory that
another CPU socket has, the memory is transferred. Transferring this memory between CPUs
is more expensive than if the memory only existed in one CPUs memory. When a JVM thread
only uses memory local to one CPU, things go fast, and if not slower (10 CPU cycles vs. 100
or some order of magnitude). The Cassandra startup script sets JVM numactl --interleave.

One is to comment out the numactl --interleave in bin/cassandra and add -
XX:+UseNUMA to cassandra-env.sh. –Al Tolbert
This setting allows the Cassandra JVM to handle NUMA directly. The GC (GC G1) will divide
GC efforts across domains, which should make GC more efficient.
What about CPU pinning? Rather than using numactl --cpunodebind to pin a JVM to a
particular node, you should consider running your EC2 instance on a smaller instance type.
Also since Cassandra uses modified SEDA, it should do okay with thread memory boundaries.
However, if you are running on a larger EC2 instance and you are running other JVM
processes on the same instance (perhaps pairing it with SOLR, Spark or others for some
locality/integration benefits), then consider using numactl --cpunodebind. The Cassandra JVM
gets bound to NUMA node, so all memory is local, and all threads will execute on the same
core. Use with caution, and since the Cassandra uses a modified SEDA, it may not benefit as

much as other Java applications. Please read Al Tolbert’s complete Cassandra tuning guide. It is a
great resource.

System Memory Guidelines for Cassandra AWS
Basic guidelines
Do not use less than 8GB of memory for the JVM. The more RAM
the better. SSTable are first stored in memory and then written to disk
sequentially. The larger the SSTable the less scanning that needs to be
done while reading and determining if a key is in an SSTable using a
bloom filter. In the EC2 world this equates to an m4.xlarge (16GB of
memory), and you need some memory for the OS, specifically the IO
buffers. The i2.xlarge and d2.xlarge are the smallest in their family and
exceed the min memory requirement (and then some).

Java heap usage for Cassandra
Cassandra maintains these components in Java heap memory:
• Bloom filters
• Partition summary
• Partition key cache
• Compression offsets
• SSTable index summary
Some of these component’s Java heap usage grows as you increase
the Java heap size.

Cassandra uses memory in 4 ways:
• Java heap
• offheap memory
• OS page cache
• OS TCP/IP stack I/O cache

The more memory the better. If the memory is available Cassandra
and the Linux OS can use it. In the Java heap, Cassandra can use
memory for the key cache which can speed up queries. For smaller
tables, that are read often, you can use the row cache. If the cache hit
rate is high, then there is less read IO. In the NoSQL world, Cassandra
gets high marks for writes, and lower marks for reads, which use case
permitting could benefit from caches.

For a read-heavy system in EC2, it could make sense to go into 60 GB
to 120 GB (e.g., m4.4xlarge, i3.2xlarge). Above this range in EC2, and
you have to worry about NUMA concerns, see NUMA Cassandra AWS
guidelines.

Cassandra relies heavily on the Linux OS page cache for caching of
data on stored on EBS and local instances volumes. Every read that
the OS gets a cache hit on, means the data is read from RAM not the
EC2 volume, and we take the IOPs or throughput of the EBS out of the
equation. This means you must leave memory for the Linux OS. You
are not running a stateless servlet engine. You must also leave some
space for Linux IO buffers. You are running a stateful NoSQL
database. The OS memory left over after the JVM should be 2x to 6x
the size of the JVM.

Cassandra makes uses off-heap memory as follows:
• Page cache
• Bloom filter
• Compression offset maps
• row caches
Think of off-heap memory as OS memory that is not managed by the
JVM garbage collectors.
Since Cassandra uses OS/off-heap memory, you have quite a bit more
OS memory than allocated to the JVM for Cassandra to be effective.

Starting breakdowns of JVM heap size vs OS RAM for Cassandra
Taking our recommendation for at least 8 vCPUs per Cassandra EC2
instance and using the 2x to 6x ratio of Cassandra JVM memory vs.
Linux system memory gives us this table.

JVM Garbage Collector for Cassandra
Due to the fact that Cassandra has some long lived objects on the heap, the
choice in GCs come down to CMS and GCG1. Choose GCG1.
The general rule is don’t use GGC1 if your heap is under 5GB some
say 8GB as GCG1 (Oracle says under 1GB).
You will notice on the preceding chart above, there is no JVM configuration
with a heap less than 5GB.
Do not use JVM CMS garbage collector if your JVM is over 16 GB. CMS is
deprecated in JDK 9. You could make a case with a heap size between 5 GB
and 8 GB for CMS.

The promise of G1 on smaller systems vs CMS is more robust performance
across a range of workloads without manual tuning. GCG1 probably won’t
perform as well in terms of ops/s, etc. Using GCG1 under a 8GB heap you
are trading some speed against CMS pain once you start having cascading
IO and heap pressure through the system. There are benchmarks that clearly
show G1 beating CMS at 8GBE.
If you want to take CMS out of the picture all together, use this table on the
next slide as a guide.

Image Credit: Ranjith Ramachandran from YouTube talk on GC
https://www.youtube.com/watch?v=UnaNQgzw4zY

Image Credit: Ranjith Ramachandran from YouTube talk on GC
https://www.youtube.com/watch?v=UnaNQgzw4zY
Image from Cloudera can be found here: http://blog.cloudera.com/blog/2014/12/tuning-java-
garbage-collection-for-hbase/
Image from Oracle can be found here: http://www.oracle.com/technetwork/tutorials/tutorials-
1876574.html
Image from Intel from here: https://www.slideshare.net/HBaseCon/dev-session-7-49202969

There are benchmarks that clearly show G1 beating CMS at 8GBE.
If you want to take CMS out of the picture all together, use this table
above as a guide.

Note that the Apache Cassandra on AWS: Guidelines and Best
Practices has a mistake. It says the max heap size you should use for
Cassandra is 8GB, and it says the DataStax Documentation says this.
The DataStax documentation says use between 14GB and 64GB of
heap. 8GB is only for older computers. There is no 8GB cap on
Cassandra JVM heaps.

To set heap size for m4.2xlarge
-Xms12G
-Xmx12G

-Xms sets min heap size and -Xms sets max heap size
You should prefer an easily tuned and stable setting over one that has
the issues that CMS does.

Guide for using GCG1 with Cassandra JVM

The XX:G1RSetUpdatingPauseTimePercent=5 sets a percent target amount (defaults 10)
that G1GC spends in updating RSets during a GC evacuation pause. An RSets is
Remembered Sets, per-region entries that allow G1GC to track outside references to heap
region. This is so GCG1 does not have to scan the whole heap for references into a
region. Read tips for tuning the GCG1. By decreasing G1RSetUpdatingPauseTimePercent, the
JVM will spend less time in updating the RSets during the stop-the-world (STW) GC pause,
and the RSets will be updated in the refinement threads.

InitiatingHeapOccupancyPercent defaults to 45% of your total Java heap. You can drop the
value starts the marking cycle earlier. It is another way to start GC earlier to avoid STW.
If you want to maximize throughput, and are less concerned with pauses. Here is another way
to configure GCG1.

Guide for using GCG1 with Cassandra JVM for faster througput but longer pauses
-XX:+UseG1GC
-XX:MaxGCPauseMillis=1000
-XX:InitiatingHeapOccupancyPercent=60

Just make sure your Cassandra timeouts are more than 1000ms. If you are experiencing long
pauses try –XX:G1HeapWastePercent:20 (it defaults to 5%).
See https://www.slideshare.net/HBaseCon/dev-session-7-49202969

GC settings common to both CMS and GCG1
Guide setting for both GCG1 and CMS
-XX:ParallelGCThreads={#vCPU / 2 }
-XX:ConcGCThreads={#vCPU / 2 }
-XX:+ParallelRefProcEnabled
-XX:+AlwaysPreTouch # allocate and zero (force fault) heap memory on startup
-XX:+UseTLAB # thread local allocation blocks
-XX:+ResizeTLAB # auto-optimize TLAB size -XX:
-UseBiasedLocking # disable biased locking for cassandra

Increasing ParallelGCThreads and ConcGCThreads is useful for any parallel
garbage collector. Turning on ParallelRefProcEnabled helps collect reference
objects (e.g., WeakReference) in parallel which will be faster if there is a lot.
“Reference processing isn’t usually a big deal for Cassandra, but in some workloads it does start to show
up in the GC logs. Since we pretty much always want all the parallel stuff offered by the JVM, go ahead
and enable parallel reference processing to bring down your p99.9’s.”–Al Tobey Writes Blog:
Cassandra tuning guide
Use +AlwaysPreTouch to allocate and zero, which does a force fault, heap memory on startup.
This ensures all memory is faulted and zeroed on startup, and prevents soft faults
making hugepage allocation more effective. Use XX:+UseTLAB to add thread local allocation
blocks. Use +ResizeTLAB to allow JVM to auto-optimize TLAB size. Then we disable bias
locking for Cassandra with -UseBiasedLocking. Biased locking was introduced in Hotspot 1.5
to reduce locking in systems that use locks efficiently (single-writer locks). Cassandra has
contended locks in frequently used areas which makes this optimization a net loss when

Cassandra is under load.

Don’t use CMS. If you really have to have a JVM that is between 5GB
and 8GB, and having an easy to configure, reliable systems does not
win out over raw speed then use this as a guide.
Remember, you can take CMS out of the equation by
using m4.2xlarge and i3.2xlarge as the smallest EC2 instances you
deploy to. If for some reason you need to go smaller than 8GB, try
using GCG1 anyway.
Do not use CMS for anything above 8GB JVM heap. It does have STW
pauses.

CMS does well until it doesn’t. (Personal experiences with CMS are
bad.)

The Parallel copy collector (ParNew) is responsible for young collection in
CMS. Use ParGCCardsPerStrideChunk (default 256) to increase granularity
of tasks distributed between worker threads.
Use CMSScavengeBeforeRemark triggers a Young GC (STW) before running
CMS Remark (STW) phase to reduce the duration of the Remark phase.
Use CMSWaitDuration so that once CMS detects it should start a new cycle,
it will wait this long for a Young GC cycle to occur. This reduces the duration
of the Initial-Mark (STW) CMS phase.
The SurvivorRatio=N divides the young generation by N+2 segments, take N
segments for Eden and 1 segment for each survivor.
The MaxTenuringThreshold defines number of young GC an object survives
before it gets pushed into the old generation. The idea here is if this is too low
that it will increase pressure on CMS.
CMS GC usually uses heuristic rules to trigger garbage collection making it
less predictable for production JVM options.
The UseCMSInitiatingOccupancyOnly initiates CMS GC in advance to avoid
full, stop-the-world, GC. CMSInitiatingOccupancyFractionsets the trigger
level for CMS, i.e., the Cassandra JVM should use less that 70% of old
generation, Note that the -Xmn sets the heap size for young generation.
Depending on how you have compaction workers setup, you want this to

be 1⁄4 to 1⁄3 size of your total heap.

Image from Intel from here: https://www.slideshare.net/HBaseCon/dev-session-7-49202969

After is after tuning G1.
Before is before tuning G1.

Cassandra uses native libraries to allocate memory if available.
Ensure JNA and JEMALLOC are installed on Linux machine Amazon
AMI. If you are creating an Amazon AMI image for Cassandra, then you
want to install both of these.
In cassandra.yaml set memtable_allocation_type to offheap_objects if
JNA and jemalloc are installed and heap_buffers if not.
Modify the memtable space by changing
the memtable_heap_space_in_mb and memtable_offheap_space_in_m
b in cassandra.yaml can reduce the amount of Java heap space that
Cassandra uses.
“jemalloc is a general purpose malloc(3) implementation that
emphasizes fragmentation avoidance and scalable concurrency
support. ” –jemalloc jemalloc.net/
“Java Native Access (JNA) JNA's design aims to provide native
access in a natural way with a minimum of effort. No boilerplate or
generated glue code is required.” --Java Native Access – Wikipedia
https://en.wikipedia.org/wiki/Java_Native_Access
Credit: Image is from a FaceBook talk on JEMalloc

http://www.downvids.net/scalable-memory-allocation-using-jemalloc-tech-
talk-1-11-2011--505622.html

Networking:
AWS EC2 has placement groups and enhanced networking which
allow high-speed throughput for clustered software like Cassandra.
This is where things get tricky in EC2. Networking is important to
Cassandra due to replication of data. However, with most
deployments an AZ is treated like a rack, and Cassandra tries to store
replica data on nodes that are in a different rack (in EC2’s case a
different AZ). EC2 placement groups and enhanced networking only
works per AZ. Thus the most common use case of Cassandra cluster
network would not use enhanced networking (placement groups) at all.
Now if you replicate higher than 2 then some replication will happen
within the same AZ and placement groups (enhanced networking)
could speed that up. Go ahead and use enhanced networking.

From EC2 docs: Cluster Networking
https://aws.amazon.com/ec2/instance-types/

“R4, X1, M4, C4, C3, I2, CR1, G2, HS1, P2, and D2 instances support
cluster networking. Instances launched into a common cluster
placement group are placed into a logical cluster that provides high-
bandwidth, low-latency networking between all instances in the
cluster. The bandwidth an EC2 instance can utilize in a cluster
placement group depends on the instance type and its networking
performance specification. When launched in a placement group,
select EC2 instances can utilize up to 10 Gbps for single-flow and 20
Gbps for multi-flow traffic in each direction (full duplex). Network traffic
outside a cluster placement group (e.g. to the Internet) is limited to 5
Gbps (full duplex). Cluster networking is ideal for high performance
analytics systems and many science and engineering applications,
especially those using the MPI library standard for parallel
programming.”

See http://highscalability.com/blog/2016/8/1/how-to-setup-a-highly-available-multi-az-
cassandra-cluster-o.html for more details

The image for this slide came from this article: How To Setup A Highly Available
Multi-AZ Cassandra Cluster On AWS EC2 by Todd Hoff for
HighScalability.

A snitch determines where nodes belong with regards to datacenters and racks. Think of a
snitch as the configuration of your network topology. Cassandra uses this information to
distribute replicas. Cassandra can also use this information, for example, to determine locality
with local quorum writes and reads. Why go to another datacenter to do a consistent read
when there is a server on the same rack backplane with a very low latency connection? Also,
when replicating data, Cassandra will not put the replica on the same rack. For Cassandra to
achieve proper replication and high-speed reads/writes from the client, and now about local
quorums then it will need to know about the network topology.

It has happened to people.

Remember Cassandra is stateful and limiting full roll out of a brand new instance with updates
preinstalled will cause lots of streaming between Cassandra nodes and is not ideal.

Remember Cassandra is stateful and limiting full roll out of a brand new instance with updates
preinstalled will cause lots of streaming between Cassandra nodes and is not ideal.

Packer is used to create machine and container images for multiple
platforms from a single source configuration. We use Packer to create
AWS EC2 AMIs (images) and Docker images. (We use Vagrant to
setup dev images on Virtual Box.) Packer like Vagrant is
from HashiCorp.Packer can use Ansible playbooks.
Cloudurable developers are big fans of HashiCorp. We love Consul,
Vagrant, Packer, Atlas, and the rest.

Notice that we are using a packer amazon-ebs builder to build an AMI
image based on our local dev boxes EC2 setup.
Also, notice that we use a series of Packer provisioners.
The packer file provisioner can copy files or directories to a machine
image. The packer shell provisioner can run shell scripts. Lastly
the packer ansible provisioner can run ansible playbooks. We covered
what playbooks/ssh-addkey.yml does in the previous article, but in
short it sets up the keys so we use ansible with our Cassandra cluster
nodes.

Before we started using ansible to do provisioning, we used bash
scripts that get reused for packer/docker, packer/aws, and
vagrant/virtual-box. The script 000-ec2-provision.shinvokes these
provisioning scripts which the first three articles covered at varying
degrees (skim those articles if you are curious or the source code, but
you don't need it per se to follow). This way we can use the same
provisioning scripts with AMIs, VirtualBox, and AWS EC2.

Those scripts tune the OS, install packages, install Cassandra, install tools to monitor OS and
Cassandra and more.

metricsd to send OS metrics to AWS
We are using metricsd to read OS metrics and send data to AWS
CloudWatch Metrics. Metricsd gathers OS KPIs for AWS CloudWatch
Metrics. We install this as a systemd process which depends on
cassandra. We also install Cassandra as a systemd process.
We use systemd unit quite a bit. We use systemd to start up
Cloudurable Cassandra config scripts. We use systemd to start up
Cassandra/Kafka, and to shut Cassandra/Kakfa (this article does not
cover Kafka at all) down nicely. Since systemd is pervasive in all new
mainstream Linux distributions, you can see that systemd is an
important concept for DevOps.
Metricsd gets installed as a systemd service by our provisioning
scripts. We use systemctl enable to install metricsd to start up on
system start. We then use systemctl start to start metricsd.
We could write a whole article on metricsd and AWS CloudWatch
metrics, and perhaps we will. For more informatino about metricsd
please see the metricsd github project.
The metricsd system unit depends on the Cassandra service. The unit

file is above.

systemd-cloud-watch to send OS logs to AWS log aggregation
We are using systemd-cloud-watch to read OS logs from systemd/journald and send
data to AWS CloudWatch Log. The systemd-cloud-watch daemon journald logs and
aggregates them to AWS CloudWatch Logging. Just like metricsd we
install systemd-cloud-watch as a systemd process which depends on cassandra.
Remember that we also install Cassandra as a systemd process, which we will cover
in a moment.

The systemd-cloud-watch daemon gets installed as a systemd service by our
provisioning scripts.
Installing systemd-cloud-watch systemd service from our provisioning scripts
see above.

We use systemctl enable to install systemd-cloud-watch to start up when the system
starts. We then use systemctl start to start systemd-cloud-watch.
The systemd-cloud-watch system unit depends on the Cassandra service. The unit
file (/etc/systemd/system/systemd-cloud-watch.service) is listed above.

Note to use metricsd and systemd-cloud-watch we have to set up the right AWS IAM
roles, and then associate that IAM instance role with our instances when we start
them up.
The systemd-cloud-watch.conf is set up to use the AWS log is listed above

(systemd-cloud-watch.conf). To learn more about systemd-cloud-watch, please see
the systemd-cloud-watch GitHub project.

Running Cassandra as a systemd service
If Cassandra stops for whatever reason, systemd can attempt to restart it. The systemd unit
file can ensure that our Cassandra service stays running. The systemd-cloud-watch utility will
be sure to log all restarts to AWS CloudWatch.
Here is the systemd unit file for Cassandra.

The above will tells systemd to restart Cassandra in one minute if it goes down. Since we are
using OS log aggregation to AWS Cloudwatch every time Cassandra goes down or is
restarted by systemd, we will get log messages that we can create alerts and trigger in
CloudWatch to then run AWS Lambdas that work with the rest of the AWS ecosystem. Critical
bugs in queries or UDF or UFA could cause Cassandra to go down. These could be hard to
track down and sporadic. Logging aggregation helps.

Using AWS CLI to create our Cassandra EC2 instance
The AWS Command Line Interface is the Swiss army knife of utilities to manage your AWS
services.
"With just one tool to download and configure, you can control multiple AWS services from the
command line and automate them through scripts." --AWS CLI Docs
The AWS command line tool slices and dices from VPCs to running CloudFormations to
backing up Cassandra snapshot files to S3. If you are working with AWS, you need the AWS
CLI.

Automating EC2 image creation with AWS CLI
Starting up an EC2 instance with the right, AMI id, IAM instance role, into the correct subnet,
using the appropriate security groups, with the right AWS key-pair name can be tedious. We
must automate as using the AWS console (GUI) is error prone (requires too much human
intervention).
Instead of using the AWS console, we use the aws command line. We create four scripts to
automate creating and connecting to EC2 instances:

bin/ec2-env.sh - setups common AWS references to subnets, security groups, key pairs
bin/create-ec2-instance.sh - uses aws command line to create an ec2 instance
bin/login-ec2-cassandra.sh Uses ssh to log into Cassandra node we are testing
bin/get-IP-cassandra.sh Uses aws command line to get the public IP address of the
cassandra instance

Note to parse the JSON coming back from the *aws command line we use jq. Note that jqis a
lightweight command-line JSON processor. To download and install jq see the jq download
documents.

Note that we created an AWS key pair called cloudurable-us-west-2. You will need to create
a VPC security group with ssh access. You should lock it down to only accept ssh
connections from your IP. At this stage, you can use a default VPC, and for now use a public
subnet. Replace the ids above with your subnet (SUBNET_CLUSTER), your key pair
(KEY_NAME_CASSANDRA), your AMI (AMI_CASSANDRA), and your IAM instance role
(IAM_PROFILE_CASSANDRA). The IAM instance role should have access to create logs and
metrics for AWS CloudWatch.

The login script (login-ec2-cassandra.sh) uses ssh to log into the instance, but to know what
IP to use, it uses get-IP-cassandra.sh

Note to parse the JSON coming back from the aws command line we use jq. Note that jq is a
lightweight command-line JSON processor. To download and install jq see the jq download
documents.

See full code listings here: https://github.com/cloudurable/cassandra-image/wiki/Cassandra-
Tutorial-4:-Using-Packer-and-Ansible-to-create-and-manage-EC2-Cassandra-instances-in-
AWS

Notice we use the aws ec2 wait to ensure the instance is ready before we tag it and before we
log into it.
All of the ids for the servers AWS resources we need to refer to are in scripts/ec2-ens.sh.

Ensure you create a key pair in AWS. Copy it to ~/.ssh and then run chmod 400 on the pem
file. Note the above login script uses bin/get-IP-cassandra.sh to get the IP address.

See https://github.com/cloudurable/cassandra-image/wiki/Cassandra-Tutorial-4:-Using-
Packer-and-Ansible-to-create-and-manage-EC2-Cassandra-instances-in-AWS for more
details.

Notice that we use systemctl status systemd-cloud-watch, systemctl status cassandra,
and systemctl status metricsd to ensure it is all working.

Ansible and EC2
Although we have base images, since Cassandra is stateful, we will want the ability to update
the images in place.
The options for configuration and orchestration management are endless (Puppet, Chef, Boto,
etc.). This article and Cloudrable uses Ansible for many of these tasks. Ansible is an agentless
architecture and works over ssh (secure shell) as we covered in our last article (Setting up
Ansible for our Cassandra Cluster to do DevOps tasks). There are some very
helpful Ansible/AWS integrations which will try to cover in future articles.

The Ansible framework allows DevOps staff to run commands against Amazon EC2 instances
as soon as they are available. Ansible is very suitable for provisioning hosts in a Cassandra
cluster as well as performing routine DevOps tasks like replacing a failed node, backing up a
node, profiling Cassandra, performing a rolling upgrade and more.
Since Ansible relies on ssh, we should make sure that ssh is working for us.

We covered the CloudFormation the whole time we were covering AWS basics.

You can watch the CloudFormation logs.
The logs are very helpful if something goes wrong.

After you are done running the CloudFormation, modify your ec2-env.sh with the output of the
CloudFormation.

After you are done running the CloudFormation, modify your ec2-env.sh with the output of the
CloudFormation.
You also need the AMI that packer created.

You can find more details here as well:
https://github.com/cloudurable/cassandra-image/wiki/Cassandra-Tutorial-5:-Setting-up-
Cassandra-Cluster-in-EC2-Part-1

And here
https://github.com/cloudurable/cassandra-image/wiki/Cassandra-Tutorial-6:-Setting-up-
Cassandra-Cluster-in-EC2-Part-2-Multi-AZs-with-Ec2Snitch

Using EC2Snitch
The cassandra-cloud utility allows us to modify the cassandra.yaml file via EC2 User Data.
The cassandra-cloud utility has an option called -snitch. The snitch options allows you to
describe the Cassandra snitch type, examples, GossipingPropertyFileSnitch,
PropertyFileSnitch, Ec2Snitch, etc. The cassandra-cloudutility defaults to "SimpleSnitch". If
we instead specify Ec2Snitch, Cassandra will recognize AWS AZs as Cassandra racks.

This files /opt/cassandra/conf/cassandra.yaml were generated with the template
/opt/cassandra/conf/cassandra-yaml.template by cassandra-cloud.
You can find cassandra-cloud at https://github.com/cloudurable/cassandra-cloud.
Cassandra Cloud is used to automate deployment to EC2 and similar cloud environments.

Cassandra nodes have to live in a VPC public subnet. You can use AWS NACL and Security
group can tighten access.
However, traffic is over public Internet so anyone can listen. You should use SSL to the cluster
communication. Java performance for SSL is not great. Setup is more difficult, you must setup
seeds to use public IPs. You can use AWS ENIs, AWS Route 53 or AWS EIPs to make access
to seed nodes more sane. The Cassandra yaml config ssl_storage_port has to be open on the
firewall (YUCK). Don’t use storage_port for public traffic unless you do not care who is
listening.

Let’s set up Cassandra for SSL and CQL clients, as well as installing Cassandra with SSL
configured on a series of Linux servers.
Cassandra allows you to secure the client transport (CQL) as well as the cluster transport
(storage transport).
SSL/TLS have some overhead. This is especially true in the JVM world which is not as
performant for handling SSL/TLS unless you are using Netty/OpenSSl integration.
Understanding SSL/TLS support for Cassandra is important for developers, DevOps and
DBAs.
If possible, use no encryption for the cluster transport (storage transport), and deploy your
Cassandra Database nodes in a private subnet, and limit access to this subnet to the client
transport. Also if possible avoid using TLS/SSL on the client transport and do client operations
from your app tier, which is located in a non-public subnet.

Encrypting the Cassandra transports
Data that travels over the client transport or storage transport across a network could be
accessed by someone you don’t want accessing said data with tools like wire shark. If data
includes private information, SSN number, credentials (password, username), credit card
numbers or account numbers, then we want to make that data unintelligible (encrypted) to any
and all 3rd parties. This is especially important if we don’t control the network. You can also
use TLS to make sure the data has not been tampered with whilst traveling the network. The
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols are designed to
provide these features (SSL is the old name for what became TLS but many people still refer
to TLS as SSL).

Cassandra is written in Java. Java defines the JSSE framework which in turn uses the Java
Cryptography Architecture (JCA). JSSE uses cryptographic service providers from JCA.
If any of the above is new to you, please take a few minutes to read through the TLS/SSL Java
guide.
This article picks up right after this one – Setting up a Cassandra cluster with cassandra image
and cassandra cloud project with Vagrant.

Before we go into the details of setting up the cassandra.yaml file, let’s create some trust
stores, key stores, and export some keys. The following script generates cluster and client
keys.

The keytool utility ships with Java SDK. We use this keytool command to create the cluster
key. Let’s break down the script that generates the keys and certificates.

Once we create the cluster key, we will want to export a public key from it.

Then we will import the public key into the trust store so that nodes can identify each other.

We perform the same three tasks for the client keys. Then lastly we create pem files for the
client keys by exporting our Java JKS keystore as a PKCS12 trust store.

• CLIENT_test_PUBLIC.cer public client key for the test cluster.
• cassandra.pks12.keystore PKS12 keystore for client used to generate pem
• test_CLIENT.key.pem private client key in pem format used by csqlsh
• CLUSTER_test_PUBLIC.cer public cluster key for the test cluster
• cassandra.truststore Trust store used by cassandra
• cassandra.keystore Key store used by cassandra
• test_CLIENT.cer.pem public client key in pem format used by csqlsh
For the cassandra_image project, these files are copied to /opt/cassandra/conf/cert. To learn
more about our Vagrant project see Setting up a Cassandra cluster with cassandra image and
cassandra cloud project with Vagrant.

As part of the provision script for cassandra_image(see Setting up a Cassandra cluster with
cassandra image and cassandra cloud project with Vagrant). We added the above.

This will copy the certs to the right location if you generated a folder in resources
(cassandra_image/resources/opt/cassandra/conf/cert), which the last script that we covered
does.

Here we use an ansible playbook to run cassandra cloud

The ansible script uses curl and the EC2 metadata to figure out the broadcast address and the
private ip address.

The ansible inventory list is as follows
[seed1]
10.1.1.10

[seed2]
10.2.1.10

[seeds]
10.1.1.10
10.1.2.10
10.2.1.10
10.2.2.10

[dc1-nodes]
10.1.1.10
10.1.1.11
10.1.2.10
10.1.2.11

[dc2-nodes]
10.2.1.10
10.2.1.11
10.2.2.10
10.2.2.11

FOLLOW CLOUDURABLE™
facebook page
google plus
twitter
linkedin

