Beyond Chat: Enhancing LiteLLM Multi-Provider App with RAG, Streaming, and AWS Bedrock

July 8, 2025

                                                                           

Design of the application

1. Project Overview

This project consists of two main components:

  1. Multi-Provider Chat Application: A Streamlit-based chat interface that enables users to interact with multiple Large Language Model (LLM) providers through a unified interface. It supports OpenAI, Anthropic Claude, Google Gemini, Perplexity, Ollama (for local models). AWS Bedrock.
  2. Vector-RAG (Retrieval-Augmented Generation) System: A complementary system that enhances the chat application with context-aware responses by retrieving relevant information from a document database. It uses vector embeddings stored in PostgreSQL with pgvector for semantic search capabilities.

Purpose and feature

The system solves several core problems:

  • Unified LLM Access: Provides a single interface to interact with multiple AI providers, allowing users to switch between different models and services seamlessly.
  • Context-Aware Responses: Enhances AI responses with relevant information from a document database using RAG technology.
  • Real-Time Interaction: creates streaming responses to demonstrate AI outputs as they’re generated, improving user experience.
  • Conversation Management: Allows saving, loading, and managing conversations across different AI providers.
  • Enterprise Integration: Supports AWS Bedrock for organizations that prefer to use Amazon’s infrastructure for AI services.
  • Local Model Support: Integrates with Ollama to enable running open-source models locally for privacy and reduced API costs.

2. Features

Features

  1. Multi-Provider Support
    • Connect to multiple LLM providers (OpenAI, Anthropic, Google, Perplexity, AWS Bedrock)
    • Run local models through Ollama
    • Switch between providers/models seamlessly during conversations
  2. Conversation Management
    • Maintain conversation history across provider switches
    • Save, load, and delete conversations
    • Generate conversation titles automatically
    • Export conversations as text files
  3. Document Management and RAG
    • Process and store documents in a vector database
    • shatter documents into chunks for improved retrieval
    • Generate vector embeddings for semantic search
    • Search documents based on similarity to queries
    • Include relevant document context in LLM prompts
  4. Response Streaming
    • Display LLM responses in real-time as they’re generated
    • Provide fallback mechanisms if streaming fails
    • demonstrate visual indicators during streaming
  5. Provider-Specific Settings
    • Configure model-specific parameters (temperature, context size)
    • Handle provider-specific authentication requirements
    • Adjust parameters based on model capabilities
  6. AWS Bedrock Integration
    • Connect to AWS Bedrock service for accessing foundation models
    • Manage AWS authentication and region settings
    • Check available models in the user’s AWS account

3. Technology Stack

Programming Languages

  • Python: Primary language for both the chat application and vector-RAG system

Frameworks and Tools

  • Streamlit: Web framework for building the user interface
  • PostgreSQL: Database for storing vectors, documents. conversation data
  • pgvector: PostgreSQL extension for vector similarity search
  • SQLAlchemy: ORM for database operations
  • Pydantic: Data validation and settings management
  • Docker: Containerization for the PostgreSQL database

Libraries and Packages

Chat Application

  • litellm: Unified interface for multiple LLM providers (all python lib)
  • python-dotenv: Environment variable management
  • requests: HTTP client for API calls
  • boto3: AWS SDK for Python, used for Bedrock integration
  • asyncio: Asynchronous programming support

Vector-RAG System

  • pgvector: PostgreSQL extension for vector embeddings
  • sentence-transformers: Local embedding generation
  • openai: OpenAI API client for embeddings
  • torch: Backend for sentence-transformers
  • sqlalchemy: Database ORM
  • psycopg2-binary: PostgreSQL adapter for Python
  • jsonschema: JSON schema validation

4. Architecture and Design

Overall Architecture

The project uses a modular layered architecture with clear separation of concerns:

  1. Presentation Layer: Streamlit web interface for user interaction
  2. Service Layer: Provider classes that handle communication with various LLM APIs
  3. Data Layer: Conversation storage and vector database components

Key Components for Chat Application

  1. LLM Provider System
    • Abstract base class (LLMProvider) defining the interface for all providers
    • Concrete createations for each supported provider (OpenAI, Anthropic, etc.)
    • Provider manager for initializing and managing provider instances
  2. Conversation Management
    • Conversation class for managing message history
    • ConversationStorage for saving/loading conversations to/from disk
    • UI components for displaying and managing conversations
  3. User Interface
    • Chat display and input handling
    • Provider settings sidebar
    • Streaming response handling
  4. Utilities
    • JSON processing utilities
    • Streaming utilities
    • Logging configuration

Key Components for Vector-RAG System

  1. Document Processing
    • Project, File and Chunk models for representing documents and their segments
    • Chunking strategies (LineChunker, SizeChunker, WordChunker)
  2. Vector Embedding
    • Embedder interface for generating vector embeddings
    • createations for different embedding providers (OpenAI, SentenceTransformers)
  3. Database Management
    • PostgreSQL with pgvector extension
    • DBFileHandler for managing files, chunks, and embeddings
    • Query utilities for semantic similarity search
  4. Search and Retrieval
    • Similarity search feature
    • Metadata filtering
    • Pagination for search results

5. Diagram Generation

Flowchart: Main Chat Application Workflow

flowchart TD
    A[User Opens Application] --> B[Initialize Providers]
    B --> C[Select Provider and Model]
    C --> D[Enter Message]
    D --> E{Streaming Enabled?}
    E -- Yes --> F[Stream Response in Real-time]
    E -- No --> G[Generate Complete Response]
    F --> H[Update Conversation History]
    G --> H
    H --> I{Save Conversation?}
    I -- Yes --> J[Store Conversation to Disk]
    I -- No --> D

    %% Add RAG integration
    D --> K{RAG Enabled?}
    K -- Yes --> L[Search Vector Database]
    L --> M[Retrieve Relevant Context]
    M --> N[Add Context to Prompt]
    N --> E
    K -- No --> E

Class Diagram: LLM Provider System

classDiagram
    `class` LLMProvider {
        <<abstract>>
        +generate_completion(prompt, output_format, options, conversation)
        +generate_json(prompt, schema, options, conversation)
        +generate_completion_stream(prompt, output_format, options, conversation, callback)
    }

    LLMProvider <|-- OpenAIProvider
    LLMProvider <|-- AnthropicProvider
    LLMProvider <|-- GoogleGeminiProvider
    LLMProvider <|-- PerplexityProvider
    LLMProvider <|-- OllamaProvider
    LLMProvider <|-- BedrockProvider

    `class` OpenAIProvider {
        -api_key
        -model
        -client
        +generate_completion()
        +generate_json()
        +generate_completion_stream()
        -_generate_completion_gpt4_series()
        -_generate_completion_o_series()
    }

    `class` AnthropicProvider {
        -api_key
        -model
        -original_model_name
        -client
        +generate_completion()
        +generate_completion_stream()
    }

    `class` GoogleGeminiProvider {
        -api_key
        -model
        -client
        +generate_completion()
        +generate_completion_stream()
    }

    `class` PerplexityProvider {
        -api_key
        -model
        -client
        +generate_completion()
        +generate_completion_stream()
        -_validate_message_sequence()
        -_is_online_model()
    }

    `class` OllamaProvider {
        -model
        -original_model_name
        -base_url
        -client
        +generate_completion()
        +generate_completion_stream()
    }

    `class` BedrockProvider {
        -aws_access_key_id
        -aws_secret_access_key
        -aws_session_token
        -aws_region
        -original_model
        -model
        -inference_profile
        -bedrock_runtime
        -use_direct_api
        +generate_completion()
        +generate_completion_stream()
        -_generate_with_boto3()
        -_generate_with_litellm()
    }

Class Diagram: Conversation Management

classDiagram
    `class` Conversation {
        +id: str
        +title: Optional[str]
        +messages: List[Message]
        +created_at: datetime
        +updated_at: datetime
        +add_message(content, message_type, role)
        +to_llm_messages()
        +ensure_alternating_messages()
    }

    `class` Message {
        +timestamp: datetime
        +message_type: MessageType
        +content: str
        +role: str
        +to_llm_message()
    }

    `class` MessageType {
        <<enum>>
        INPUT
        OUTPUT
    }

    `class` ConversationStorage {
        -storage_dir: Path
        +save_conversation(conversation)
        +load_conversation(conversation_id)
        +delete_conversation(conversation_id)
        +list_conversations()
        +generate_conversation_title(conversation)
        +update_conversation_title(conversation_id, new_title)
    }

    Conversation "1" *-- "many" Message
    Message *-- MessageType
    ConversationStorage -- Conversation : manages >

Class Diagram: Vector-RAG System

classDiagram
    `class` Chunker {
        <<abstract>>
        +chunk_text(file)
    }

    `class` LineChunker {
        -chunk_size
        -overlap
        +chunk_text(file)
    }

    `class` SizeChunker {
        -chunk_size
        -overlap
        +chunk_text(file)
    }

    `class` WordChunker {
        -chunk_size
        -overlap
        +chunk_text(file)
    }

    `class` Embedder {
        <<abstract>>
        -model_name
        -dimension
        +get_dimension()
        +embed_texts(texts)
    }

    `class` OpenAIEmbedder {
        -client
        -batch_size
        +embed_texts(chunks)
    }

    `class` SentenceTransformersEmbedder {
        -model
        -batch_size
        +embed_texts(chunks)
    }

    `class` MockEmbedder {
        +embed_texts(texts)
    }

    `class` FileHandler {
        <<abstract>>
        +create_project(name, description)
        +add_file(project_id, file_model)
        +get_file(project_id, file_path, filename)
        +delete_file(file_id)
        +list_files(project_id)
        +search_chunks_by_text(project_id, query_text, page, page_size, similarity_threshold)
    }

    `class` DBFileHandler {
        -engine
        -embedder
        -Session
        -chunker
        +session_scope()
        +get_or_create_project(name, description)
        +add_chunks(file_id, chunks)
        +add_file(project_id, file_model)
        +search_chunks_by_embedding(project_id, embedding, page, page_size, similarity_threshold, file_id, metadata_filter)
    }

    Chunker <|-- LineChunker
    Chunker <|-- SizeChunker
    Chunker <|-- WordChunker

    Embedder <|-- OpenAIEmbedder
    Embedder <|-- SentenceTransformersEmbedder
    Embedder <|-- MockEmbedder

    FileHandler <|-- DBFileHandler

    DBFileHandler --> Chunker : uses
    DBFileHandler --> Embedder : uses

Sequence Diagram: Chat Interaction with Streaming

sequenceDiagram
    participant User
    participant UI as Streamlit UI
    participant Provider as LLM Provider
    participant Conversation as Conversation Manager

    User->>UI: Enter message
    UI->>Provider: generate_completion_stream(prompt)

    activate Provider
    Provider->>Provider: Initialize streaming
    Provider-->>UI: launch streaming chunks

    loop For each chunk
        Provider-->>UI: Send text chunk
        UI->>UI: Update display with chunk
    end

    Provider-->>UI: Complete streaming
    deactivate Provider

    UI->>Conversation: Add message to history
    Conversation->>Conversation: Update conversation
    UI->>UI: Display full response

Sequence Diagram: RAG Integration Flow

sequenceDiagram
    participant User
    participant UI as Streamlit UI
    participant VectorDB as Vector Database
    participant LLM as LLM Provider

    User->>UI: Ask question
    UI->>VectorDB: search_chunks_by_text(query)

    activate VectorDB
    VectorDB->>VectorDB: Generate query embedding
    VectorDB->>VectorDB: discover similar chunks
    VectorDB-->>UI: Return relevant chunks
    deactivate VectorDB

    UI->>UI: Combine query with context
    UI->>LLM: generate_completion(enhanced_prompt)

    activate LLM
    LLM->>LLM: Process with context
    LLM-->>UI: Return response
    deactivate LLM

    UI->>UI: Display response to user

Schema Diagram: Vector-RAG Database

erDiagram
    PROJECTS {
        int id PK
        string name
        string description
        datetime created_at
        datetime updated_at
    }

    FILES {
        int id PK
        int project_id FK
        string filename
        string file_path
        string crc
        int file_size
        datetime last_updated
        datetime last_ingested
        datetime created_at
    }

    CHUNKS {
        int id PK
        int file_id FK
        string content
        vector embedding
        int chunk_index
        jsonb chunk_metadata
        datetime created_at
    }

    PROJECTS ||--o{ FILES : contains
    FILES ||--o{ CHUNKS : divided_into

Entity Relationship Diagram

erDiagram
    Project ||--o{ File : contains
    File ||--o{ Chunk : contains
    Conversation ||--o{ Message : contains

    Project {
        int id
        string name
        string description
        datetime created_at
        datetime updated_at
    }

    File {
        int id
        int project_id
        string filename
        string file_path
        string crc
        int file_size
        datetime created_at
    }

    Chunk {
        int id
        int file_id
        string content
        vector embedding
        int chunk_index
        jsonb metadata
        datetime created_at
    }

    Conversation {
        string id
        string title
        datetime created_at
        datetime updated_at
    }

    Message {
        datetime timestamp
        enum message_type
        string content
        string role
    }

User Journey Diagram

journey
    title Chat Application User Journey
    section Initial Setup
        Log in to Application: 5: User
        Select LLM Provider: 3: User
        Configure Provider Settings: 3: User
    section Basic Chat
        Type Question: 5: User
        View Streaming Response: 4: User
        Follow Up Question: 5: User
    section Working with RAG
        Ask Domain-Specific Question: 5: User
        Review Sources from Documents: 4: User
        Refine Query Based on Context: 4: User
    section Conversation Management
        Save Conversation: 5: User
        Load Previous Conversation: 4: User
        Export Conversation: 3: User
    section Advanced Features
        Try Different Providers: 4: User
        Compare Model Responses: 5: User
        Use `AWS` Bedrock Integration: 3: User

Use Case Diagram

graph TD
    subgraph Actors
        User([User])
    end

    subgraph Chat Application
        UC1[Chat with LLMs]
        UC2[Select Provider/Model]
        UC3[Manage Conversations]
        UC4[Configure Provider Settings]
        UC5[View Streaming Responses]
        UC6[Export Conversations]
    end

    subgraph RAG System
        UC7[Search Knowledge Base]
        UC8[Add Documents to KB]
        UC9[Receive Context-Enhanced Responses]
        UC10[Filter by Metadata]
    end

    User --> UC1
    User --> UC2
    User --> UC3
    User --> UC4
    User --> UC5
    User --> UC6
    User --> UC7
    User --> UC8
    User --> UC9
    User --> UC10

Mind Map

mindmap
  root((Multi-Provider<br>Chat App))
    LLM Providers
      OpenAI
        GPT-4o
        GPT-4.1
      Anthropic
        Claude 3 Opus
        Claude 3 Sonnet
        Claude 3 Haiku
      Google Gemini
      Perplexity
      Ollama
        Local Models
        Custom Settings
      `AWS` Bedrock
        Claude Models
        Llama Models
        Titan Models
    Features
      Streaming Responses
      Conversation Management
        Save/Load
        Export
        Auto-Title
      RAG Integration
        Vector Search
        Document Chunking
        Metadata Filtering
      Provider Settings
        Temperature Control
        Context Length Adjustment
    UI Components
      Chat Interface
      Sidebar Settings
      Conversation History
      Provider Selection
    Vector-RAG System
      Database
        PostgreSQL
        pgvector Extension
      Embedding Generation
        OpenAI Embeddings
        Sentence Transformers
      Chunking Strategies
        Line-based
        Size-based
        Word-based

Architecture Diagram

graph TD
    subgraph "User Interface Layer"
        A[Streamlit Web Interface]
        B[Sidebar Controls]
        C[Chat Display]
    end

    subgraph "Service Layer"
        D[Provider Manager]
        E[LLM Provider Interface]
        F[Conversation Manager]
        G[Streaming Controller]
        H[Vector Search `API`]
    end

    subgraph "Provider createations"
        I[OpenAI]
        J[Anthropic]
        K[Google Gemini]
        L[Perplexity]
        M[Ollama]
        N[`AWS` Bedrock]
    end

    subgraph "Data Layer"
        O[Conversation Storage]
        P[PostgreSQL + pgvector]
        Q[Document Processor]
        R[Embedding Generation]
    end

    subgraph "External Services"
        S[OpenAI `API`]
        T[Claude `API`]
        U[Gemini `API`]
        V[Perplexity `API`]
        W[Local Ollama Server]
        X[`AWS` Bedrock Service]
    end

    A <--> B
    A <--> C
    B <--> D
    C <--> F
    C <--> G

    D <--> E
    E <--> I
    E <--> J
    E <--> K
    E <--> L
    E <--> M
    E <--> N

    F <--> O
    G <--> E

    I <--> S
    J <--> T
    K <--> U
    L <--> V
    M <--> W
    N <--> X

    H <--> P
    H <--> Q
    H <--> R

    E <--> H

6. Directory Structure

Chat Application Directory Structure

chat/
├── ./
│   └── pyproject.toml        # Project metadata and dependencies
├── test/                     # Test directory
│   ├── test_all_providers_streaming.py  # Test streaming feature
│   ├── test_bedrock.py       # Test `AWS` Bedrock provider
│   ├── test_bedrock_access.py  # Check `AWS` Bedrock model access
│   ├── test_litellm_streaming.py  # Test litellm streaming independently
│   ├── test_stream_anthropic.py  # Test Anthropic streaming
│   ├── test_stream_openai.py  # Test OpenAI streaming
│   ├── test_stream_openai_json.py  # Test OpenAI `JSON` streaming
│   ├── test_streaming.py     # General streaming tests
│   └── chat/                 # Additional chat tests
├── docs/                     # Documentation
│   └── images/               # Images for documentation
└── src/                      # Source code
    └── chat/                 # Main application code
        ├── __init__.py       # Package initialization
        ├── app.py            # Main application entry point
        ├── ai/               # LLM provider createations
        │   ├── __init__.py
        │   ├── anthropic.py  # Anthropic Claude provider
        │   ├── bedrock.py    # `AWS` Bedrock provider
        │   ├── google_gemini.py  # Google Gemini provider
        │   ├── llm_provider.py  # Abstract provider interface
        │   ├── ollama.py     # Ollama local model provider
        │   ├── open_ai.py    # OpenAI provider
        │   ├── perplexity.py  # Perplexity provider
        │   └── provider_manager.py  # Provider management
        ├── conversation/     # Conversation management
        │   ├── __init__.py
        │   ├── conversation.py  # Conversation and message models
        │   └── conversation_storage.py  # Conversation persistence
        ├── ui/               # UI components
        │   ├── __init__.py
        │   ├── chat.py       # Chat display and input handling
        │   ├── chat_utils.py  # Chat-specific utilities
        │   ├── conversation_manager.py  # UI for conversation management
        │   └── sidebar.py    # Sidebar UI components
        └── util/             # Utility functions
            ├── __init__.py
            ├── json_util.py  # `JSON` processing utilities
            ├── logging_util.py  # Logging configuration
            └── streaming_util.py  # Streaming helper functions

Vector-RAG Directory Structure

vector-rag/
├── ./
│   └── pyproject.toml        # Project metadata and dependencies
├── tests/                    # Test directory
│   ├── conftest.py           # Test configuration
│   ├── embeddings/           # Embedder tests
│   │   ├── test_embedders.py  # General embedder tests
│   │   ├── test_openai_embedder.py  # OpenAI embedder tests
│   │   └── test_sentence_transformers_embedder.py  # Local embedder tests
│   ├── integration/          # Integration tests
│   │   └── test_ingestion.py  # Document ingestion testing
│   ├── chunking/             # Chunking strategy tests
│   │   ├── test_line_chunker.py  # Line-based chunker tests
│   │   ├── test_size_chunker.py  # Size-based chunker tests
│   │   └── test_word_chunker.py  # Word-based chunker tests
│   ├── db/                   # Database tests
│   │   ├── test_add_chunk_direct.py  # Chunk addition tests
│   │   ├── test_db_file_handler.py  # File handler tests
│   │   ├── test_dimension_utils.py  # Vector dimension utilities tests
│   │   ├── test_semantic_search.py  # Semantic search tests
│   │   └── test_semantic_search_with_metadata.py  # Metadata filtering tests
│   └── api/                  # `API` tests
│       └── test_search_api.py  # Search `API` tests
├── db/                       # Database scripts
│   ├── scripts/              # Database management scripts
│   │   ├── create_index.py   # Index creation script
│   │   └── import_data.py    # Data import script
│   └── sql/                  # `SQL` scripts
│       └── init.sql          # Database initialization `SQL`
├── environment/              # Environment configuration
├── src/                      # Source code
    ├── scripts/              # Utility scripts
    │   ├── init_db.py        # Database initialization script
    │   └── run_example.py    # Example usage script
    └── vector_rag/           # Main package
        ├── __init__.py       # Package initialization
        ├── config.py         # Configuration management
        ├── logging_config.py  # Logging setup
        ├── model.py          # Core data models
        ├── embeddings/       # Embedding generation
        │   ├── __init__.py
        │   ├── base.py       # Base embedder interface
        │   ├── mock_embedder.py  # Mock embedder for testing
        │   ├── openai_embedder.py  # OpenAI embeddings
        │   └── sentence_transformers_embedder.py  # Local embeddings
        ├── chunking/         # Document chunking strategies
        │   ├── __init__.py
        │   ├── base_chunker.py  # Base chunker interface
        │   ├── line_chunker.py  # Line-based chunking
        │   ├── size_chunker.py  # Size-based chunking
        │   └── word_chunker.py  # Word-based chunking
        ├── db/               # Database operations
        │   ├── __init__.py
        │   ├── base_file_handler.py  # Abstract file handler
        │   ├── db_file_handler.py  # Concrete file handler
        │   ├── db_model.py   # Database models
        │   └── dimension_utils.py  # Vector dimension utilities
        └── api/              # `API` interfaces
            └── __init__.py   # `API` package initialization

Main Components Description

Chat Application

  1. src/chat/ai/: Contains createations for different LLM providers. Each provider (OpenAI, Anthropic, etc.) creates the abstract LLMProvider interface, allowing for consistent interaction regardless of the backend service.
  2. src/chat/conversation/: Manages conversation history and persistence. The Conversation class represents a chat session, while ConversationStorage handles saving and loading conversations from disk.
  3. src/chat/ui/: Houses the Streamlit UI components. The chat.py module handles chat display and user input, while sidebar.py manages provider selection and settings.
  4. src/chat/util/: Contains utility functions for JSON processing, logging configuration, and streaming response handling.
  5. src/chat/app.py: The main entry point that ties all components together, defining the Streamlit application flow.

Vector-RAG System

  1. src/vector_rag/chunking/: Contains different strategies for breaking documents into chunks. These include LineChunker (line-based), SizeChunker (character-based). WordChunker (word-based).
  2. src/vector_rag/embeddings/: Houses the embedding generation components. It includes OpenAIEmbedder for using OpenAI’s API and SentenceTransformersEmbedder for local embedding using HuggingFace models.
  3. src/vector_rag/db/: Manages database operations. The DBFileHandler class handles file, chunk. embedding storage in PostgreSQL, while dimension_utils.py ensures the vector dimensions are properly configured.
  4. src/vector_rag/api/: Provides a simplified API for integrating the RAG system with other applications, such as the chat interface.
  5. src/vector_rag/model.py: Defines the core data models, including Project, File, and Chunk.
  6. src/vector_rag/config.py: Handles configuration management, loading settings from environment variables and .env files.

Key Features and createation Highlights

  1. Provider Abstraction: The LLMProvider interface abstracts away the differences between various LLM services, allowing for consistent interaction regardless of the backend.
  2. Streaming Support: All providers create generate_completion_stream for real-time, token-by-token response generation, with proper error (every developer knows this pain) handling and fallback mechanisms.
  3. AWS Bedrock Integration: The BedrockProvider class enables access to foundation models through AWS’s infrastructure, supporting both direct API calls and LiteLLM integration.
  4. Semantic Search: The vector-RAG system creates similarity search with metadata filtering, allowing for contextually relevant document retrieval.
  5. Flexible Chunking: Multiple chunking strategies enable optimal document processing for different content types, with configurable chunk sizes and overlap.
  6. Local and Remote Embeddings: Support for both OpenAI’s API and local SentenceTransformers models for generating vector embeddings.
  7. Conversation Management: Comprehensive features for saving, loading, and managing conversation history, with automatic title generation.
  8. Provider-Specific Settings: Tailored settings for each provider, including specialized options for Ollama’s local models and AWS Bedrock configuration.

This comprehensive project shows a sophisticated approach to integrating multiple LLM providers with a RAG system, creating a powerful and flexible chat application with context-aware responses.

Conclusion

The enhancements we’ve made to our multi-provider chat application—streaming responses, RAG capabilities, and AWS Bedrock integration—transform it from a simple chat interface into a powerful knowledge access tool. These features function together to provide a more responsive, informative. flexible experience for users across a variety of use cases.

By combining the generative capabilities of leading LLMs with the context-awareness of RAG and the real-time feedback of streaming responses, all through a clean and intuitive interface, our application shows the potential of modern AI tools for practical applications.

The complete source code for this project is available on GitHub at https://github.com/RichardHightower/chat, with the RAG createation at https://github.com/SpillwaveSolutions/vector-rag.

Whether you’re building internal tools for your organization, exploring AI capabilities, or just looking for a flexible way to interact with multiple LLM providers, we hope this createation provides a valuable starting point for your own projects.


About the Author

Rick Hightower is a AI specialist with a background in ML and Data Engineering. He has a passion for AI and natural language processing. He has extensive experience in building scalable, distributed systems and is currently focused on AI integration in enterprise applications.

Connect with Rick on LinkedIn or follow their articles on Medium.

                                                                           
comments powered by Disqus

Apache Spark Training
Kafka Tutorial
Akka Consulting
Cassandra Training
AWS Cassandra Database Support
Kafka Support Pricing
Cassandra Database Support Pricing
Non-stop Cassandra
Watchdog
Advantages of using Cloudurable™
Cassandra Consulting
Cloudurable™| Guide to AWS Cassandra Deploy
Cloudurable™| AWS Cassandra Guidelines and Notes
Free guide to deploying Cassandra on AWS
Kafka Training
Kafka Consulting
DynamoDB Training
DynamoDB Consulting
Kinesis Training
Kinesis Consulting
Kafka Tutorial PDF
Kubernetes Security Training
Redis Consulting
Redis Training
ElasticSearch / ELK Consulting
ElasticSearch Training
InfluxDB/TICK Training TICK Consulting