January 9, 2025
🚀 What’s New in This 2025 Update
Major Updates and Changes
- Cloud-Native First - Fully integrated with Kubernetes and serverless
- AI/ML Integration - Direct pipelines to machine learning frameworks
- 200+ Connectors - Massive expansion of Kafka Connect ecosystem
- ksqlDB Maturity - Production-ready SQL streaming at scale
- Automated Operations - Self-healing, auto-scaling ecosystem
- Enhanced Security - Zero-trust architecture support
Deprecated Features
- ❌ Standalone REST Proxy - Replaced by API gateways
- ❌ Manual deployments - Cloud-native automation standard
- ❌ Legacy monitoring - Unified observability platforms
- ❌ Custom integration scripts - Managed connectors preferred
Ready to explore the complete Kafka ecosystem? Let’s discover how each component transforms streaming data into business value.
The Kafka Ecosystem - Modern Stream Processing Platform
mindmap
root((Kafka Ecosystem 2025))
Core Platform
Kafka Brokers
KRaft Controllers
Topics & Partitions
MirrorMaker 2.0
Stream Processing
Kafka Streams
ksqlDB
Flink Integration
Spark Streaming
Integration Layer
Kafka Connect
200+ Connectors
CDC Sources
Cloud Sinks
Data Governance
Schema Registry
Data Contracts
Evolution Rules
Compatibility
Cloud Native
Kubernetes Operators
Serverless Functions
API Gateways
Service Mesh
The Kafka ecosystem has evolved from a messaging platform into a complete event streaming platform. While Kafka Core handles the fundamental broker, topic, and partition management, the ecosystem provides everything needed for enterprise-grade streaming applications.
The modern ecosystem includes Kafka Streams for Java-based stream processing, ksqlDB for SQL-based streaming, Kafka Connect with hundreds of pre-built connectors, and Schema Registry for data governance. These components work together seamlessly, especially in cloud-native deployments.
Cloudurable provides Kafka training, Kafka consulting, Kafka support and helps setting up Kafka clusters in AWS.
Ecosystem Architecture Overview
flowchart TB
subgraph Sources["Data Sources"]
DB[(Databases)]
API[REST APIs]
IOT[IoT Devices]
APPS[Applications]
FILES[File Systems]
end
subgraph Connect["Kafka Connect"]
SC[Source Connectors]
SINK[Sink Connectors]
end
subgraph Core["Kafka Core"]
TOPICS[Topics/Partitions]
KRAFT[KRaft Controllers]
end
subgraph Processing["Stream Processing"]
STREAMS[Kafka Streams]
KSQL[ksqlDB]
FLINK[Apache Flink]
end
subgraph Destinations["Data Destinations"]
DW[(Data Warehouse)]
LAKE[(Data Lake)]
ML[ML Platforms]
SEARCH[Search Engines]
MONITOR[Monitoring]
end
Sources --> SC
SC --> TOPICS
TOPICS --> STREAMS
TOPICS --> KSQL
TOPICS --> FLINK
STREAMS --> TOPICS
KSQL --> TOPICS
TOPICS --> SINK
SINK --> Destinations
classDef source fill:#bbdefb,stroke:#1976d2,stroke-width:1px,color:#333333
classDef kafka fill:#e1bee7,stroke:#8e24aa,stroke-width:1px,color:#333333
classDef process fill:#c8e6c9,stroke:#43a047,stroke-width:1px,color:#333333
classDef dest fill:#fff9c4,stroke:#f9a825,stroke-width:1px,color:#333333
class DB,API,IOT,APPS,FILES source
class SC,SINK,TOPICS,KRAFT kafka
class STREAMS,KSQL,FLINK process
class DW,LAKE,ML,SEARCH,MONITOR dest
Kafka Streams - Stateful Stream Processing
Kafka Streams has matured into the go-to library for building sophisticated stream processing applications in Java. Key capabilities in 2025:
Core Features
- Exactly-once processing - Guaranteed with transactions
- Stateful operations - RocksDB-backed state stores
- Time-based operations - Event-time processing
- Interactive queries - Query state stores via REST
- Fault tolerance - Automatic state recovery
Modern Kafka Streams Architecture
classDiagram
class StreamsApplication {
+StreamsConfig config
+Topology topology
+KafkaStreams streams
+start(): void
+stop(): void
}
class Topology {
+addSource(name, topics): void
+addProcessor(name, supplier): void
+addSink(name, topic): void
+addStateStore(store): void
}
class KStream {
+filter(predicate): KStream
+map(mapper): KStream
+groupByKey(): KGroupedStream
+join(other): KStream
+to(topic): void
}
class KTable {
+filter(predicate): KTable
+mapValues(mapper): KTable
+join(other): KTable
+toStream(): KStream
}
class StateStore {
+name: String
+get(key): Value
+put(key, value): void
+delete(key): void
+range(from, to): Iterator
}
class InteractiveQueries {
+getStore(name): ReadOnlyStore
+getHostInfo(): HostInfo
+queryMetadata(): StreamsMetadata
}
StreamsApplication "1" *-- "1" Topology
StreamsApplication "1" *-- "1" KafkaStreams
Topology "1" *-- "many" KStream
Topology "1" *-- "many" KTable
Topology "1" *-- "many" StateStore
KafkaStreams "1" *-- "1" InteractiveQueries
Example: Real-Time Fraud Detection
// Modern Kafka Streams application for fraud detection
StreamsBuilder builder = new StreamsBuilder();
// Transaction stream
KStream<String, Transaction> transactions =
builder.stream("transactions");
// User profiles table (compacted topic)
KTable<String, UserProfile> profiles =
builder.table("user-profiles");
// Fraud detection logic
KStream<String, FraudAlert> fraudAlerts = transactions
.join(profiles,
(transaction, profile) ->
new EnrichedTransaction(transaction, profile))
.groupByKey()
.windowedBy(TimeWindows.of(Duration.ofMinutes(5)))
.aggregate(
FraudScore::new,
(key, transaction, score) ->
score.update(transaction),
Materialized.with(Serdes.String(), fraudScoreSerde))
.toStream()
.filter((key, score) -> score.isSuspicious())
.map((key, score) ->
KeyValue.pair(key.key(), new FraudAlert(score)));
// Output fraud alerts
fraudAlerts.to("fraud-alerts");
// Enable interactive queries
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_SERVER_CONFIG, "localhost:7070");
KafkaStreams streams = new KafkaStreams(builder.build(), props);
streams.start();
Cloud-Native Kafka Streams
flowchart TB
subgraph K8s["Kubernetes Cluster"]
subgraph Pod1["Streams Pod 1"]
APP1[Streams App]
STATE1[(State Store)]
QUERY1[Query API]
end
subgraph Pod2["Streams Pod 2"]
APP2[Streams App]
STATE2[(State Store)]
QUERY2[Query API]
end
subgraph Pod3["Streams Pod 3"]
APP3[Streams App]
STATE3[(State Store)]
QUERY3[Query API]
end
LB[Load Balancer]
end
subgraph Kafka["Kafka Cluster"]
T1[Input Topics]
T2[Output Topics]
CHANGELOG[Changelog Topics]
end
T1 --> APP1
T1 --> APP2
T1 --> APP3
APP1 --> T2
APP2 --> T2
APP3 --> T2
STATE1 <--> CHANGELOG
STATE2 <--> CHANGELOG
STATE3 <--> CHANGELOG
LB --> QUERY1
LB --> QUERY2
LB --> QUERY3
classDef k8s fill:#bbdefb,stroke:#1976d2,stroke-width:1px,color:#333333
classDef kafka fill:#e1bee7,stroke:#8e24aa,stroke-width:1px,color:#333333
class Pod1,Pod2,Pod3,LB k8s
class T1,T2,CHANGELOG kafka
Kafka Connect - Universal Data Integration
Kafka Connect has exploded with 200+ production-ready connectors in 2025:
Popular Source Connectors
- Database CDC: Debezium for MySQL, PostgreSQL, MongoDB, Oracle
- Cloud Services: AWS S3, Azure Blob, Google Cloud Storage
- SaaS Applications: Salesforce, ServiceNow, Zendesk
- IoT Platforms: MQTT, CoAP, Industrial protocols
- Message Queues: RabbitMQ, ActiveMQ, IBM MQ
Popular Sink Connectors
- Data Warehouses: Snowflake, BigQuery, Redshift
- Search Engines: Elasticsearch, OpenSearch, Solr
- Databases: JDBC, MongoDB, Cassandra
- Object Storage: S3, MinIO, Azure Blob
- Observability: Datadog, Splunk, New Relic
Connect Architecture
flowchart TB
subgraph ConnectCluster["Connect Cluster (Distributed Mode)"]
W1[Worker 1<br>Tasks: 1-3]
W2[Worker 2<br>Tasks: 4-6]
W3[Worker 3<br>Tasks: 7-9]
CONFIG[Config Topic]
OFFSET[Offset Topic]
STATUS[Status Topic]
end
subgraph Connectors["Active Connectors"]
C1[MySQL CDC<br>Source]
C2[S3 Sink]
C3[Elasticsearch<br>Sink]
end
subgraph Management["Management"]
API[REST API]
UI[Connect UI]
OPERATOR[K8s Operator]
end
C1 -.-> W1
C2 -.-> W2
C3 -.-> W3
W1 <--> CONFIG
W2 <--> OFFSET
W3 <--> STATUS
API --> W1
UI --> API
OPERATOR --> W1
classDef worker fill:#c8e6c9,stroke:#43a047,stroke-width:1px,color:#333333
classDef connector fill:#bbdefb,stroke:#1976d2,stroke-width:1px,color:#333333
classDef mgmt fill:#fff9c4,stroke:#f9a825,stroke-width:1px,color:#333333
class W1,W2,W3 worker
class C1,C2,C3 connector
class API,UI,OPERATOR mgmt
Example: Real-Time Data Pipeline
// Debezium MySQL Source Connector
{
"name": "mysql-source",
"config": {
"connector.class": "io.debezium.connector.mysql.MySqlConnector",
"database.hostname": "mysql.example.com",
"database.port": "3306",
"database.user": "debezium",
"database.password": "${secrets:mysql/password}",
"database.server.id": "184054",
"database.server.name": "fullfillment",
"database.include.list": "inventory",
"transforms": "route,unwrap",
"transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",
"transforms.route.regex": "([^.]+)\\.([^.]+)\\.([^.]+)",
"transforms.route.replacement": "$3",
"transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState"
}
}
// Snowflake Sink Connector
{
"name": "snowflake-sink",
"config": {
"connector.class": "com.snowflake.kafka.connector.SnowflakeSinkConnector",
"topics": "orders,customers,products",
"snowflake.url.name": "account.snowflakecomputing.com",
"snowflake.user.name": "kafka_connector",
"snowflake.private.key": "${secrets:snowflake/private_key}",
"snowflake.database.name": "raw_data",
"snowflake.schema.name": "kafka",
"buffer.count.records": "10000",
"buffer.flush.time": "60"
}
}
ksqlDB - SQL for Streaming
ksqlDB brings SQL to streaming, making stream processing accessible to analysts and data engineers:
Key Features in 2025
- Materialized views - Continuously updated tables
- Stream-table joins - Enrich streams with reference data
- Windowed aggregations - Time-based analytics
- User-defined functions - Custom processing logic
- Pull queries - Request/response on state
- Push queries - Real-time subscriptions
ksqlDB Architecture
classDiagram
class ksqlDB {
+engine: StreamsEngine
+metastore: Metastore
+restServer: RestServer
+executeQuery(sql): Result
}
class Stream {
+name: String
+schema: Schema
+topic: String
+keyFormat: Format
+valueFormat: Format
}
class Table {
+name: String
+schema: Schema
+topic: String
+isWindowed: boolean
+stateStore: String
}
class PersistentQuery {
+id: String
+statement: String
+topology: Topology
+state: QueryState
}
class PullQuery {
+statement: String
+target: Table
+execute(): Rows
}
class PushQuery {
+statement: String
+target: Stream/Table
+subscribe(): Publisher
}
ksqlDB "1" *-- "many" Stream
ksqlDB "1" *-- "many" Table
ksqlDB "1" *-- "many" PersistentQuery
ksqlDB "1" --> "many" PullQuery
ksqlDB "1" --> "many" PushQuery
Example: Real-Time Analytics
-- Create stream from Kafka topic
CREATE STREAM pageviews (
user_id VARCHAR,
page_id VARCHAR,
duration_ms INT,
ts TIMESTAMP
) WITH (
KAFKA_TOPIC='pageviews',
VALUE_FORMAT='JSON',
TIMESTAMP='ts'
);
-- Create user profile table
CREATE TABLE users (
user_id VARCHAR PRIMARY KEY,
username VARCHAR,
region VARCHAR,
level VARCHAR
) WITH (
KAFKA_TOPIC='users',
VALUE_FORMAT='AVRO'
);
-- Real-time user activity enrichment
CREATE STREAM enriched_activity AS
SELECT
p.user_id,
u.username,
u.region,
u.level,
p.page_id,
p.duration_ms,
p.ts
FROM pageviews p
INNER JOIN users u ON p.user_id = u.user_id
EMIT CHANGES;
-- Windowed aggregation for metrics
CREATE TABLE user_activity_stats AS
SELECT
user_id,
COUNT(*) as page_count,
SUM(duration_ms) as total_duration,
AVG(duration_ms) as avg_duration
FROM pageviews
WINDOW TUMBLING (SIZE 5 MINUTES)
GROUP BY user_id
EMIT CHANGES;
-- Anomaly detection
CREATE TABLE suspicious_users AS
SELECT
user_id,
COUNT(*) as request_count
FROM pageviews
WINDOW HOPPING (SIZE 1 MINUTE, ADVANCE BY 10 SECONDS)
GROUP BY user_id
HAVING COUNT(*) > 1000
EMIT CHANGES;
Schema Registry - Data Governance
Schema Registry ensures data compatibility and enables schema evolution:
Modern Features
- Multi-format support - Avro, JSON Schema, Protobuf
- Schema evolution rules - Forward, backward, full compatibility
- Schema references - Compose complex schemas
- Data contracts - Enforce at producer/consumer
- Security - ACLs and encryption
Schema Registry Architecture
flowchart TB
subgraph Producers["Producers"]
P1[Service A]
P2[Service B]
end
subgraph Registry["Schema Registry"]
SCHEMAS[(Schema Store)]
COMPAT[Compatibility Checker]
CACHE[Schema Cache]
API[REST API]
end
subgraph Consumers["Consumers"]
C1[Analytics]
C2[ML Pipeline]
end
P1 -->|Register Schema| API
P2 -->|Check Compatibility| COMPAT
API --> SCHEMAS
COMPAT --> SCHEMAS
SCHEMAS --> CACHE
C1 -->|Fetch Schema| CACHE
C2 -->|Fetch Schema| CACHE
classDef producer fill:#bbdefb,stroke:#1976d2,stroke-width:1px,color:#333333
classDef registry fill:#e1bee7,stroke:#8e24aa,stroke-width:1px,color:#333333
classDef consumer fill:#c8e6c9,stroke:#43a047,stroke-width:1px,color:#333333
class P1,P2 producer
class SCHEMAS,COMPAT,CACHE,API registry
class C1,C2 consumer
Example: Schema Evolution
// Version 1 - Initial schema
{
"type": "record",
"name": "User",
"namespace": "com.example",
"fields": [
{"name": "id", "type": "string"},
{"name": "name", "type": "string"},
{"name": "email", "type": "string"}
]
}
// Version 2 - Add optional field (backward compatible)
{
"type": "record",
"name": "User",
"namespace": "com.example",
"fields": [
{"name": "id", "type": "string"},
{"name": "name", "type": "string"},
{"name": "email", "type": "string"},
{"name": "age", "type": ["null", "int"], "default": null}
]
}
// Version 3 - Add required field with default (backward compatible)
{
"type": "record",
"name": "User",
"namespace": "com.example",
"fields": [
{"name": "id", "type": "string"},
{"name": "name", "type": "string"},
{"name": "email", "type": "string"},
{"name": "age", "type": ["null", "int"], "default": null},
{"name": "created_at", "type": "long", "default": 0}
]
}
Cloud-Native Integration
Kubernetes Operator Pattern
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: production-cluster
spec:
kafka:
version: 3.6.0
replicas: 6
listeners:
- name: plain
port: 9092
type: internal
- name: tls
port: 9093
type: internal
tls: true
config:
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 2
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 1Ti
class: fast-ssd
entityOperator:
topicOperator: {}
userOperator: {}
Serverless Integration
flowchart LR
subgraph Events["Event Sources"]
E1[API Gateway]
E2[S3 Events]
E3[DynamoDB Streams]
end
subgraph Lambda["Lambda Functions"]
L1[Event Router]
L2[Transformer]
L3[Enricher]
end
subgraph Kafka["Kafka"]
T1[Raw Events]
T2[Processed Events]
end
subgraph Consumers["Event Consumers"]
C1[Analytics Lambda]
C2[ML Pipeline]
C3[Data Lake]
end
E1 --> L1
E2 --> L1
E3 --> L1
L1 --> T1
T1 --> L2
L2 --> L3
L3 --> T2
T2 --> C1
T2 --> C2
T2 --> C3
classDef event fill:#bbdefb,stroke:#1976d2,stroke-width:1px,color:#333333
classDef lambda fill:#c8e6c9,stroke:#43a047,stroke-width:1px,color:#333333
classDef kafka fill:#e1bee7,stroke:#8e24aa,stroke-width:1px,color:#333333
class E1,E2,E3 event
class L1,L2,L3,C1 lambda
class T1,T2 kafka
MirrorMaker 2.0 - Cross-Cluster Replication
MirrorMaker 2.0 provides sophisticated multi-cluster replication:
flowchart TB
subgraph DC1["Data Center 1"]
K1[Kafka Cluster 1]
MM1[MirrorMaker 2.0]
end
subgraph DC2["Data Center 2"]
K2[Kafka Cluster 2]
MM2[MirrorMaker 2.0]
end
subgraph Cloud["Cloud Region"]
K3[Kafka Cluster 3]
MM3[MirrorMaker 2.0]
end
K1 <-->|Active-Active| K2
K1 -->|Active-Passive| K3
K2 -->|Active-Passive| K3
MM1 -.-> K2
MM1 -.-> K3
MM2 -.-> K1
MM2 -.-> K3
MM3 -.-> K1
MM3 -.-> K2
classDef dc fill:#bbdefb,stroke:#1976d2,stroke-width:1px,color:#333333
classDef cloud fill:#e1bee7,stroke:#8e24aa,stroke-width:1px,color:#333333
class K1,MM1,K2,MM2 dc
class K3,MM3 cloud
Ecosystem Best Practices
1. Design for Evolution
- Use Schema Registry from day one
- Plan for backward compatibility
- Version your data contracts
- Document schema changes
2. Embrace Managed Services
- Reduce operational overhead
- Automatic scaling and updates
- Built-in monitoring and security
- Focus on business logic
3. Choose the Right Tool
- Kafka Streams: Complex stateful processing in Java
- ksqlDB: SQL-based processing and analytics
- Kafka Connect: Data integration without code
- External: Flink/Spark for advanced analytics
4. Monitor Everything
- Stream processing lag
- Connector health and throughput
- Schema compatibility violations
- Cross-region replication lag
5. Security First
- Enable encryption everywhere
- Use ACLs and RBAC
- Implement data masking
- Audit all access
Ecosystem Review
What is Kafka Streams best for?
Building sophisticated, stateful stream processing applications in Java with exactly-once guarantees, interactive queries, and fault tolerance.
When should I use Kafka Connect?
For integrating external systems without writing code. With 200+ connectors, it handles most data integration needs out of the box.
What makes ksqlDB powerful?
SQL interface for streaming data, making real-time analytics accessible to analysts. Perfect for materialized views and continuous queries.
Why is Schema Registry critical?
Ensures data compatibility across producers and consumers, enables safe schema evolution, and provides data governance.
How does MirrorMaker 2.0 improve on v1?
Automatic topic discovery, preserves partitions and offsets, supports active-active replication, and integrates with Kafka Connect.
What’s the future of the ecosystem?
Deeper cloud-native integration, AI/ML pipelines, automated operations, and unified management platforms.
Related Content
- What is Kafka?
- Kafka Architecture
- Kafka Topic Architecture
- Kafka Consumer Architecture
- Kafka Producer Architecture
- Kafka Low Level Design
- Kafka Log Compaction
- Kafka and Schema Registry
- Kafka Ecosystem
- Kafka vs. JMS
- Kafka versus Kinesis
- Kafka Command Line Tutorial
- Kafka Failover Tutorial
About Cloudurable
Leverage the complete Kafka ecosystem with expert guidance. Cloudurable provides Kafka training, Kafka consulting, Kafka support and helps setting up Kafka clusters in AWS.
Check out our new GoLang course. We provide onsite Go Lang training which is instructor led.
TweetApache Spark Training
Kafka Tutorial
Akka Consulting
Cassandra Training
AWS Cassandra Database Support
Kafka Support Pricing
Cassandra Database Support Pricing
Non-stop Cassandra
Watchdog
Advantages of using Cloudurable™
Cassandra Consulting
Cloudurable™| Guide to AWS Cassandra Deploy
Cloudurable™| AWS Cassandra Guidelines and Notes
Free guide to deploying Cassandra on AWS
Kafka Training
Kafka Consulting
DynamoDB Training
DynamoDB Consulting
Kinesis Training
Kinesis Consulting
Kafka Tutorial PDF
Kubernetes Security Training
Redis Consulting
Redis Training
ElasticSearch / ELK Consulting
ElasticSearch Training
InfluxDB/TICK Training TICK Consulting